
mdpi.com/journal/particles

Special Issue Reprint

Selected Papers from 
the “7th Workshop on the 
Nuclear Mass Table with 
DRHBc Theory”

Edited by 
Shuangquan Zhang and Youngman Kim



Selected Papers from the “7th
Workshop on the Nuclear Mass Table
with DRHBc Theory”





Selected Papers from the “7th
Workshop on the Nuclear Mass Table
with DRHBc Theory”

Guest Editors

Shuangquan Zhang

Youngman Kim

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Guest Editors

Shuangquan Zhang

School of Physics

Peking University

Beijing

China

Youngman Kim

Center for Exotic Nuclear

Studies

Institute for Basic Science

Daejeon

South Korea

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Particles (ISSN 2571-712X),

freely accessible at: https://www.mdpi.com/journal/particles/special issues/DRHBc2024.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-4411-1 (Hbk)

ISBN 978-3-7258-4412-8 (PDF)

https://doi.org/10.3390/books978-3-7258-4412-8

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Myeong-Hwan Mun, Panagiota Papakonstantinou and Youngman Kim

Shape Coexistence in Odd-Z Isotopes from Fluorine to Potassium
Reprinted from: Particles 2025, 8, 32, https://doi.org/10.3390/particles8010032 . . . . . . . . . . 1

Chang Zhou, Peng Guo and Xiaofei Jiang

Giant Halo in 66Ca Within Relativistic Continuum Hartree–Bogoliubov Theory Combined with
Lipkin–Nogami Method
Reprinted from: Particles 2024, 7, 1128–1138, https://doi.org/10.3390/particles7040069 . . . . . 8

Changhoon Song, Yongbeom Choi, Youngman Kim and Chang-Hwan Lee

Bubble Structure in Isotopes of Lu to Hg
Reprinted from: Particles 2025, 8, 37, https://doi.org/10.3390/particles8020037 . . . . . . . . . . 19

Myeong-Hwan Mun, Kyoungsu Heo and Myung-Ki Cheoun

Calculation of α Decay Half-Lives for Tl, Bi, and At Isotopes
Reprinted from: Particles 2025, 8, 42, https://doi.org/10.3390/particles8020042 . . . . . . . . . . 27

Liang Wu, Wei Zhang, Jing Peng and Jinke Huang

Shell Structure Evolution of U, Pu, and Cm Isotopes with Deformed Relativistic
Hartree–Bogoliubov Theory in a Continuum
Reprinted from: Particles 2025, 8, 19, https://doi.org/10.3390/particles8010019 . . . . . . . . . . 37

Sibo Wang, Peng Guo and Cong Pan

Determining the Ground State for Superheavy Nuclei from the Deformed Relativistic
Hartree–Bogoliubov Theory in Continuum
Reprinted from: Particles 2024, 7, 1139–1149, https://doi.org/10.3390/particles7040070 . . . . . 49

Cong Pan and Xin-Hui Wu

Examination of Possible Proton Magic Number Z = 126 with the Deformed Relativistic
Hartree-Bogoliubov Theory in Continuum
Reprinted from: Particles 2025, 8, 2, https://doi.org/10.3390/particles8010002 . . . . . . . . . . . 60

Pengxiang Du and Jian Li

Exploring the Neutron Magic Number in Superheavy Nuclei: Insights into N = 258

Reprinted from: Particles 2024, 7, 1086–1094, https://doi.org/10.3390/particles7040066 . . . . . 73

Wei-Jian Liu, Chen-Jun Lv, Peng Guo, Cong Pan, Sibo Wang and Xin-Hui Wu

Magic Number N = 350 Predicted by the Deformed Relativistic Hartree-Bogoliubov Theory in
Continuum: Z = 136 Isotopes as an Example
Reprinted from: Particles 2024, 7, 1078–1085, https://doi.org/10.3390/particles7040065 . . . . . 82

Qin Zhou and Zhipan Li

Masses and Quadrupole Deformations of Even-Z Nuclei Within a Triaxial Relativistic
Hartree–Bogoliubov Model
Reprinted from: Particles 2025, 8, 57, https://doi.org/10.3390/particles8020057 . . . . . . . . . . 90

v





About the Editors

Shuangquan Zhang

Shuangquan Zhang received his Ph.D. in Particle Physics and Nuclear Physics from Peking

University in 2002. His research primarily focuses on nuclear structure and nuclear astrophysics.

He has conducted systematic investigations in several key areas, including nuclear chiral symmetry,

novel collective excitation modes, the properties of exotic nuclei, and relativistic density functional

theory. He currently serves as an Associate Professor at Peking University.

Youngman Kim

Youngman Kim earned his Ph.D. in Hadron and Nuclear Physics from Hanyang University in

1999.

His current research interests focus on RAON-related physics, including nuclear reactions,

nuclear structure, and nuclear astrophysics.

As the leader of the nuclear theory group at the Institute for Basic Science (IBS), he has

successfully established a RAON-focused nuclear theory team within the institute.

vii





Preface

In December 2018, a campaign was launched to construct the first nuclear mass table that

simultaneously incorporates continuum and deformation effects. This ambitious initiative emerged

from the increasing demand to acquire mass data of experimentally-challenging exotic nuclei and to

deepen our understanding of nuclear physics, leveraging the remarkable capabilities of the deformed

relativistic Hartree–Bogoliubov theory in continuum (DRHBc). To achieve this goal, an international

collaboration—the DRHBc mass table collaboration—was established. The collaboration now

comprises 33 universities and institutions from countries such as China, South Korea, and Japan.

Over the past seven years, the DRHBc mass table collaboration has achieved several significant

milestones. By integrating the cutting-edge DRHBc with the superior density functional PC-PK1,

the collaboration has produced two widely cited compilations in Atomic Data and Nuclear Data Tables.

These publications summarizes the ground-state properties of even–even and even–Z nuclei with 8 ≤
Z ≤ 120, covering the region from the proton drip line to the neutron drip line. Beyond constructing

the nuclear mass table, the collaboration has also conducted a series of remarkable studies on a wide

range of topics, including deformed halos, charge radii, stability peninsula, structural evolution,

prolate dominance, shape coexistence, dynamical correlations, and particle emissions, among others.

A series of workshops have played a crucial role in facilitating this collaborative effort. The

inaugural workshop, held in Daejeon and Seoul, laid the foundation for the formation of a vibrant

and productive research community. Subsequent workshops, hosted at various locations across Asia,

have marked the continued growth of this community, attracting an increasing number of participants

from diverse institutions and fostering new research networks. The “7th workshop on nuclear mass

table with DRHBc theory“, hosted by Soongsil University and held in Gangneung from July 1 to 4,

2024, represents a milestone in this ongoing journey. This workshop focused on the final stage of

constructing the DRHBc mass table, with a particular emphasis on the properties of odd-Z nuclei and

superheavy nuclei. Looking ahead, we remain committed to pursuing excellence in this field and

eagerly anticipate the new discoveries that lie ahead.

This Special Issue features 10 contributions from esteemed experts who participated in the 7th

workshop. It aims to provide a comprehensive overview of the current status of the DRHBc mass

table project and explore related key issues, including structural evolution in various nuclear regions,

possible magic numbers in superheavy nuclei, and a range of exotic nuclear phenomena. While this

Special Issue is primarily intended for the nuclear physics community, this collection may also be of

interest to other branches of physics.

In closing, we would like to take this opportunity to express our deep gratitude to Prof. Jie Meng,

the Chair of the workshop series, for proposing this Special Issue, and to all the contributing authors

for their valuable work. We also sincerely acknowledge the efforts of the MDPI Book staff and the

Particles Editorial team. Special thanks are extended to Mr. Ethan Zhang, Managing Editor, for his

dedicated assistance throughout the preparation of this volume.

Shuangquan Zhang and Youngman Kim

Guest Editors
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Article

Shape Coexistence in Odd-Z Isotopes from Fluorine to Potassium

Myeong-Hwan Mun 1,2, Panagiota Papakonstantinou 3 and Youngman Kim 4,*

1 Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea; aa3101@gmail.com
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ppapakon@ibs.re.kr
4 Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon 34126, Republic of Korea
* Correspondence: ykim@ibs.re.kr

Abstract: The shape of a nucleus is one of its fundamental properties. We conduct a
systematic investigation of shape coexistence in odd-Z nuclei from fluorine to potassium
using the deformed relativistic Hartree–Bogoliubov theory in continuum. First, we present
a simple argument regarding the energy differences between degenerate vacua, which
can serve as a criterion for identifying candidates for shape coexistence. We then predict
isotopes that exhibit shape coexistence.

Keywords: relativistic density functional theory; shape coexistence; potential energy curve

1. Introduction

A nucleus, composed of nucleons that can be thought of as quantum marbles, is a
fascinating entity exhibiting a variety of characteristics due to the quantum nature of its
constituents. Understanding how nucleons combine to form a nucleus with exotic features
is a crucial problem that has garnered significant attention in recent years, especially with
the advent of new rare isotope beam facilities that enable the production of more exotic
nuclei. Ultimately, we must explore how the shell and collective properties of a nucleus
emerge from fundamental theories such as quantum chromodynamics. The shape of a
nucleus is one of its most fundamental properties; some nuclei display exotic characteristics
such as pear shapes, bubble structures, and shape coexistence. The investigation of these
exotic nuclear features provides invaluable insights into the complex nature of nuclear
forces that govern the formation and structure of atomic nuclei. By exploring how neutrons
and protons arrange themselves within these unusual shapes, one can gain a deeper
understanding of the underlying nuclear forces and quantum mechanical effects at play.

Shape coexistence is a noteworthy exotic property of nuclei [1–6]. A nucleus can
display different shapes with only a small energy difference compared to its total binding
energy. Nuclei that exhibit shape coexistence have multiple minima in their potential
energy curve. Shape coexistence is closely linked to the island of inversion [7,8] because the
change in the ordering of nuclear shells in an island of inversion can result in the emergence
of multiple nuclear shapes. Islands of inversion have been studied by a variety of methods,
e.g., large-scale shell model calculations [9] and ab initio calculations [10].

In density functional theory, shape coexistence is closely linked to the existence of
degenerate vacua. This raises the following question: how small is “small” in the context
of degenerate vacua? We can roughly estimate this small energy difference using the
uncertainty principle. Taking Δx · Δp ≈ h̄/2 with a nuclear diameter Δx ≈ 2.5A1/3 fm, we
can estimate the energy uncertainty as ΔE ≈ (Δp)2/2m ≈ 3.3/A2/3 MeV ≈ 100–300 keV

Particles 2025, 8, 32 https://doi.org/10.3390/particles8010032
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for most nuclei. Therefore, in the context of density functional theory, we can consider an
energy difference of a few hundred keV to be “small”.

The main motivation for the present theoretical survey of potential candidates for
phase coexistence is the possibility to study the phenomenon in stable and exotic light nuclei
in new RI facilities, and especially RAON in South Korea [11]. In a previous work [12],
we focused on even−Z candidates in the region from oxygen to calcium. At present, we
expand our study to odd−Z isotopes in the same region, from fluorine (F) to potassium
(K). As in that earlier study, we use the deformed relativistic Hartree–Bogoliubov theory in
continuum (DRHBc) and the PC-PK1 density functional [13]. This approach allows us to
investigate the properties of both exotic and stable nuclei by self-consistently incorporating
axial deformation, pairing correlations, and continuum effects [14–20]. We refer to ref. [21]
for a review of shape coexistence in odd-mass nuclei and refs. [22,23] for some recent
studies on shape coexistence.

2. Deformed Relativistic Hartree–Bogoliubov Theory in Continuum

The Lagrangian density of DRHBc is given by [13,19,24]:

L = ψ̄
(
iγμ∂μ − m

)
ψ − 1

2
αS(ψ̄ψ)(ψ̄ψ) − 1

2
αV

(
ψ̄γμψ

)
(ψ̄γμψ)

−1
2

αTV
(
ψ̄�τγμψ

)
(ψ̄�τγμψ) − 1

3
βS(ψ̄ψ)3 − 1

4
γS(ψ̄ψ)4 − 1

4
γV

[(
ψ̄γμψ

)
(ψ̄γμψ)

]2

−1
2

δS∂ν(ψ̄ψ)∂ν(ψ̄ψ)− 1
2

δV∂ν

(
ψ̄γμψ

)
∂ν(ψ̄γμψ)

−1
2

δTV∂ν

(
ψ̄�τγμψ

)
∂ν
(
ψ̄�τγμψ

)− 1
4

FμνFμν − e
1 − τ3

2
ψ̄γμψAμ, (1)

where m represents the nucleon mass and αS, αV , and αTV denote the coupling constants
for four-fermion contact interactions. The terms involving βS, γS, and γV account for
density-dependent effects, while those with δS, δV , and δTV reflect finite-range effects.
Additionally, Aμ and Fμν correspond to the four-vector potential and the electromagnetic
field strength tensor, respectively. The subscripts S, V, and TV stand for scalar, vector, and
isovector, respectively.

By applying the mean-field approximation to the Lagrangian density in Equation (1)
and performing the Legendre transformation, we derive the mean-field Hamiltonian
density. Using the variational method on this Hamiltonian density, we then arrive at the
relativistic Hartree–Bogoliubov equation [25].

(
hD − λ Δ
−Δ∗ −h∗D + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
. (2)

Here, Ek denotes the quasiparticle energy, and Uk and Vk are the quasiparticle wave
functions, with λ denoting the Fermi energy. The Dirac Hamiltonian hD is given by

hD(r) = α · p + β(M + S(r)) + V(r), (3)

and the scalar S(r) and vector V(r) potentials can be expressed as

S(r) = αSρS + βSρ2
S + γSρ3

S + δSΔρS, (4)

V(r) = αVρV + γVρ3
V + δVΔρV + eA0

+ αTVτ3ρTV + δTVτ3ΔρTV . (5)
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The local densities ρS(r), ρV(r), and ρTV(r) can be expressed in terms of the quasipar-
ticle wave functions as follows:

ρS(r) = ∑
k>0

V̄k(r)Vk(r), (6)

ρV(r) = ∑
k>0

V†
k (r)Vk(r), (7)

ρTV(r) = ∑
k>0

V†
k (r)τ3Vk(r). (8)

In principle, we can derive the pairing potential for the particle–particle channel from
the Lagrangian density in Equation (1), but for simplicity, we adopt the following form:

Δkk′ (r, r
′
) = −∑

k̃k̃′
Vpp

kk′ ,k̃k̃′
(r, r

′
)κk̃k̃′ (r, r

′
), (9)

where the pairing tensor is defined by κ = V∗UT . For Vpp, we use the density-dependent
zero-range pairing interaction

Vpp(r, r
′
) =

V0

2
(1 − Pσ)δ(r − r

′
)

(
1 − ρ(r)

ρsat

)
, (10)

where ρsat is the nuclear saturation density. The total energy of a nucleus can be expressed as

Etot = ∑
k>0

(λτ−Ek)v2
k − Epair + Ec.m. −

∫
d3r

[
1
2

αSρ2
S

+
1
2

αVρ2
V +

1
2

αTVρ2
TV +

2
3

βSρ3
S +

3
4

γSρ4
S +

3
4

γVρ4
V

+
1
2
(δSρSΔρS+δVρVΔρV+δTVρ3Δρ3+ρpeA0)

]
, (11)

where Ec.m. denotes the center of mass correction energy. The zero-range pairing force
results in a local pairing field Δ(r) with the associated pairing energy energy expressed
as follows:

Epair = −1
2

∫
d3rκ(r)Δ(r). (12)

To investigate exotic nuclear properties, it is essential to self-consistently incorporate
both continuum and deformation effects, as well as pairing. We expand the wave functions
using the Dirac Wood–Saxon basis to account for continuum effects. To address axial
deformation while maintaining spatial reflection symmetry, we expand the potentials (S(r)
and V(r)) and densities (ρS(r), ρV(r), and ρTV(r)) in terms of Legendre polynomials. For
more details on DRHBc, we refer to [17,19].

By performing constrained calculations for different degrees of quadrupole defor-
mation, we can obtain not only the lowest energy solution for a given nucleus, but also
identify other possible local minima in the potential energy curves. The existence of two
near-degenerate vacua will lead to two perturbative ground states 1 and 2. Neither of them
is the exact ground state. The ground state is given by the symmetric or the antisymmetric
linear combination of the perturbative ground states.

3. Results

In this section, we present the candidate isotopes exhibiting shape coexistence for
fluorine (F, Z = 9), sodium (Na, Z = 11), aluminium (Al, Z = 13), phosphorus (P, Z = 15),
chlorine (Cl, Z = 17), and potassium (K, Z = 19).
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To identify candidate isotopes that exhibit shape coexistence, we examine the potential
energy curve (PEC) of each isotope as a function of the quadrupole deformation parameter
(β2). We search for isotopes with near-degenerate minima. Examples of PECs for potential
candidates, namely 23F, 31Al, 38Cl, and 42K, are shown in Figure 1. The PECs are compared
with existing results obtained with the Hartree–Fock–Bogoliubov approach using the
Gogny D1S functional, which are available at [26] and found qualitatively similar.

Based on our rough estimates using the uncertainty principle outlined in the Introduc-
tion, we find that the energy difference ΔE for shape coexistence is typically on the order of
a few hundreds keV, as also shown in ref. [27]. In this work, since we are studying light
nuclei, which generally have lower total energies compared to medium- or heavy-mass
nuclei, we adopt the criterion of 300 keV for shape coexistence.

Figure 1. Potential energy curves for selected isotopes (a) 23F, (b) 31Al, (c) 38Cl, and (d) 42K as a
function of the quadrupole deformation parameter (β2). Results of the present DRHBc calculations
(solid line) are shown in comparison with those of HFB calculations (dash line) with the Gogny
D1S effective interaction [26]. The square and the circle represent local minima of DRHBc and HFB
calculations, respectively.

In Table 1, we list all forty-six odd-Z isotopes in the range Z = 9 to Z = 19 that are
found to have two minima with an energy difference ΔE smaller than 300 keV. Expanding
the ΔE criterion to below 500 keV leads to twenty-four additional candidates for shape
coexistence, which are not listed in Table 1, but are indicated in Figure 2.

Figure 2 shows all odd-Z nuclei from F to K which are predicted particle-bound using
the DRHBc theory with the PC-PK1 functional. The candidates for shape coexistence in
odd-Z isotopes are highlighted in red text within the yellow boxes (ΔE ≤ 300 keV) and
cyan boxes (ΔE ≤ 500 keV). In addition, the candidates based on results with the Gogny
D1S functional, available at [26], are shown with red circles. The regions of candidates
predicted with the two approaches and functionals are similar, which is not surprising
given that they both are mean-field approaches. Experiments on nuclei where there are
deviations could offer valuable insights for further theoretical developments.

4
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Table 1. The odd-Z isotopes we found in the range Z = 9 to Z = 19 that have two minima with an
energy difference ΔE smaller than 300 keV.

Isotopes β2 ΔE (MeV) Isotopes β2 ΔE (MeV)

16F −0.12, 0.20 0.09 31Cl −0.17, 0.09 0.27
17F −0.08, 0.10 0.03 32Cl −0.10, 0.08 0.12
23F −0.17, 0.19 0.16 33Cl −0.07, 0.06 0.08
24F −0.13, 0.13 0.13 38Cl −0.09, 0.10 0.11
25F −0.08, 0.09 0.04 39Cl −0.09, 0.12 0.05
26F −0.12, 0.13 0.02 44Cl −0.22, 0.27 0.17
27F −0.08, 0.10 0.02 50Cl −0.25, 0.06 0.23
28F −0.09, 0.09 0.02 51Cl −0.21, 0.10 0.21

25Na −0.26, 0.31 0.12 55Cl −0.10, 0.08 0.27
30Na −0.08, 0.10 0.10 56Cl −0.06, 0.06 0.06
27Al −0.27, 0.18 0.18 33K −0.09, 0.06 0.12
28Al −0.19, 0.16 0.21 34K −0.06, 0.05 0.07
31Al −0.16, 0.16 0.27 35K −0.05, 0.05 0.04
32Al −0.11, 0.11 0.25 37K −0.08, 0.04 0.21
33Al −0.04, 0.06 0.12 38K −0.07, 0.05 0.23
41Al −0.36, 0.34 0.24 40K −0.07, 0.06 0.23
45Al −0.26, 0.19 0.29 41K −0.06, 0.04 0.09
28P −0.20, 0.16 0.20 42K −0.08, 0.07 0.18
32P −0.10, 0.08 0.15 43K −0.10, 0.06 0.28
34P −0.06, 0.05 0.08 50K −0.10, 0.07 0.20
36P −0.07, 0.10 0.02 51K −0.08, 0.04 0.10
47P −0.25, 0.13 0.13 52K −0.05, 0.03 0.03
50P −0.05, 0.08 0.07 53K −0.07, 0.03 0.20

Figure 2. Summary of nuclei exhibiting shape coexistence in odd-Z isotopes from F to K. The shape
coexistence candidates are highlighted in red text within yellow boxes (ΔE ≤ 300 keV). The x-axis
represents the mass number of the isotopes. The cyan boxes represent 24 additional candidates based
on the 500 keV criterion. Only odd-Z isotopes are shown for clarity.

It is worth noting that the dual-shell mechanism, used to predict regions of the nuclear
chart where shape coexistence might occur, was introduced in refs. [28,29]. The studies
showed that nuclei with proton or neutron numbers in the ranges 7–8, 17–20, 34–40, 59–70,
96–112, and 146–168 are potential candidates for shape coexistence. Let us take Cl isotopes
as an example to compare our results with the prediction in refs. [28,29]. In our study, using
the 500 MeV criterion, we identify 14 candidate isotopes, 7 of which align with the results
from refs. [28,29].

4. Summary

We identified odd-Z isotopes from fluorine to potassium which are predicted to show
shape coexistence within the DRHBc framework. Based on the uncertainty principle, we
estimated that the energy difference ΔE between degenerate minima on the potential
energy curve for shape coexistence has to be of the order of a few hundred keV. In this
work, we adopted a criterion of 300 keV (500 keV) for shape coexistence in light nuclei and
identified 46 (70) candidate isotopes from fluorine to potassium.
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Abstract: The impact of the Lipkin–Nogami (LN) method on a giant halo is investigated within
the relativistic continuum Hartree–Bogoliubov (RCHB) theory. The ground-state properties of Ca
isotopes obtained from RCHB and RCHB+LN calculations are presented. The results show that the
LN correction does not change the range of Ca isotopes with a giant halo. Taking 66Ca as an example,
the neutron density distribution with LN correction is found to be slightly more diffused, which can
be illustrated by the enlargement of the root mean square radius and the enhancement of the relative
contribution in neutron 3s1/2 level.

Keywords: relativistic continuum Hartree–Bogoliubov theory; Lipkin–Nogami method; Dirac Woods–
Saxon basis; giant halo

1. Introduction

The study of exotic nuclei with extreme N/Z ratios has become one of the frontiers of
nuclear physics [1–4]. One of the interesting and impressive phenomena in exotic nuclei
is the halo, which was first discovered in 11Li [5] and has been observed in many light
nuclei near drip lines [6]. Experimentally, some unusual properties have been found
in halo nuclei, for example, their abnormally large radii [5], their narrow momentum
distribution in the breakup reaction [7,8], the enhancement of electromagnetic dissociation
cross-sections [9], etc.

In halo nuclei, the weakly-bound valence nucleons could be easily scattered to the
continuum states due to the pairing correlations [10]. Thus, a theory which gives a proper
theoretical description of halo phenomena must properly treat the continuum, the pairing
correlations, the large spatial distributions, and the coupling among them. The rela-
tivistic continuum Hartree–Bogoliubov (RCHB) theory [11] fulfills all these features self-
consistently. It has achieved great success in reproducing and interpreting the halo in
11Li [10]. The RCHB theory also predicted the halo nuclei in Zr isotopes with a large
amount of particle numbers in the halo region [12]. This special kind of halo is called
the giant halo. Giant halo phenomena have also been predicted in Ca isotopes [13,14]
within RCHB theory. In addition to RCHB theory, the relativistic mean field–BCS approach
combined with proper treatments of the resonant continuum [15–18], the relativistic [19]
and non-relativistic [20–22] Hartree–Fock–Bogoliubov theory, and the RCHB theory with
the Green’s function method [23,24] also give the predictions of giant halos.

In RCHB theory, the pairing correlations are treated with Bogoliubov transformation.
However, Bogoliubov transformation breaks the symmetry of the particle number. Thus, it
is necessary to investigate the influence of the particle number symmetry breaking on the
halo and giant halo. Variation after particle number projection method is a rigorous way to
restore the broken symmetry of the particle number [25,26]. However, such calculations
are expected to have a massive computational cost for realistic interactions [26,27]. To
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reduce the time consumption, an approximation to the variation after the particle number
projection method by means of the Lipkin–Nogami (LN) method [28–30] has been widely
used. Up to now, the LN method has been applied in many nuclear studies, such as nuclear
charge distributions [31], abnormal odd–even staggering around 132Sn [32], the properties
of low-lying states [33,34], superdeformed bands [27,35,36], the thermodynamic properties
of nuclei [37], and two-neutrino double beta decay [38].

In this paper, we combine the RCHB theory with the LN method to investigate the
giant halo phenomena in Ca isotopes, especially in 66Ca. By comparing the RCHB and
RCHB+LN calculations, the impact of the LN correction on giant halos is discussed.

2. Method

2.1. The Relativistic Continuum Hartree–Bogoliubov Theory

The detailed formalism of RCHB theory can be found in Refs. [11,39,40]. The RCHB
theory, assuming the spherical symmetry, solves the relativistic Hartree–Bogoliubov (RHB)
equations [41] in the coordinate space in order to deal with the large density distribution.
Alternatively, one can use a basis with improved asymptotic behavior at large distances [42],
for example, the spherical Dirac Woods–Saxon (DWS) basis used here. As shown in Ref. [42],
an expansion in the DWS basis is fully equivalent to the calculations in coordinate space. In
fact, the DWS basis has already been used in the deformed relativistic Hartree–Bogoliubov
theory in continuum (DRHBc) [43], which has many applications so far [44–48]. Our
examination shows that the results of RCHB solved in the DWS basis are the same as those
of DRHBc with a spherical shape.

The RHB equations self-consistently treat the mean field and pairing correlations,
(

hD − λ Δ
−Δ∗ −h∗D + λ

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
, (1)

where λ is the Fermi surface, Ek is the quasiparticle energy, and (Uk, Vk)
T are the quasipar-

ticle wave functions. The Dirac Hamiltonian hD in coordinate space reads as

hD(r) = α · p + V(r) + β[M + S(r)], (2)

with S(r) and V(r) being the scalar and the vector potential, respectively, and where

S(r) = αSρS + βSρ2
S + γSρ3

S + δSΔρS, (3)

V(r) = αVρV + γVρ3
V + δVΔρV + e

1 − τ3

2
A0 + αTVτ3ρ3 + δTVτ3Δρ3. (4)

The pairing potential Δ reads as

Δ(r1, r2) = Vpp(r1, r2)κ(r1, r2), (5)

with the density-dependent zero-range pairing force Vpp,

Vpp(r1, r2) =
1
2

V0(1 − Pσ)δ(r1 − r2)

(
1 − ρ(r1)

ρsat

)
. (6)

and the pairing tensor κ = V∗UT .

2.2. The Lipkin–Nogami Method

The Lipkin–Nogami method [28–30] is an approximation to the variation after particle
number projection. Its detailed formalism and its comparison with the exact projection
method can be found in Ref. [26].
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The application of the LN method to the framework of RHB gives a modification of
the RHB equation, i.e., the RHB+LN equation [27]

(
hD − λ − 2λ2(1 − 2ρ) Δ

−Δ∗ −h∗D + λ + 2λ2(1 − 2ρ∗)

)(
Uk
Vk

)
= (Ek − λ2)

(
Uk
Vk

)
, (7)

where λ2 is given by

λ2 = −1
4

Tr2Tr2[(κ
∗ρ)v̄(σκ)]

[Tr(κκ†)]2 − 2Tr(κκ†κκ†)
(8)

with ρ being the density matrix and σ = 1 − ρ and v̄abcd = 〈ab|Vpp|cd − dc〉 being the anti-
symmetrized matrix elements of the pairing force Vpp. The trace Tr2 means the summation
only runs over the particle–particle channel [25].

After the approximate particle number projection, the total energy reads as [49]

ELN = 〈Ĥ〉 − λ2〈(ΔN̂)2〉. (9)

Similarly, the physical observables should be calculated with the approximately particle
number projected state. In particular, the LN occupation probabilities in canonical basis are
given by [31,49]

wk = v2
k + u2v2 u2

kv2
ku2v2(u2 − v2)− u2

kv2
k(u

2
k − v2

k)u
2v2

2(u2v2)3 + (u2v2)2 − 6u2v2 u4v4 − [u2v2(u2 − v2)]2
(10)

with x = ∑k>0 xk.

3. Numerical Details

For the present investigation of Ca isotopes, the spherical RCHB calculations are
adopted. It is noted that in Ref. [50], the DRHBc theory was used to calculate all the even–
even nuclei with 8 ≤ Z ≤ 120, and the authors found that the investigated Ca isotopes
were all spherical. As mentioned above, instead of coordinate space [11], here the RCHB
theory is solved in the DWS basis [42]. This is actually a simplification of the DRHBc theory
with the assumption of spherical symmetry, i.e., the Hamiltonian matrix is expanded in
jπ-blocks instead of mπ-blocks. Based on this, the LN correction is further implemented.

The relativistic density functional PC-PK1 [51] is employed in the particle–hole chan-
nel, and in the particle–particle channel, the density-dependent zero-range pairing force (6)
is adopted, where the pairing strength V0 = −325 MeV · fm3 and the saturation density
ρsat = 0.152 fm−3 together with a pairing window of 100 MeV. The energy cutoff for the
DWS basis in the Fermi sea is E+

cut = 300 MeV. The angular momentum cutoff for the DWS
basis is Jcut = 23/2 h̄. The number of DWS basis states in the Dirac sea is taken to be the
same as that in the Fermi sea. All these numerical details are well examined in the DRHBc
mass table calculations [50,52–54], where the RHB equation is also solved in a spherical
DWS basis.

In the RCHB+LN calculations, all the numerical details are taken to be the same
as those in the RCHB calculations except the pairing strength, because the LN correc-
tion gives stronger pairing correlations with the same pairing force (cf. Figure 4a,b in
Ref. [27]). Figure 1 shows the odd–even mass differences for Ca isotopes calculated by
RCHB+LN in comparison with those in RCHB calculations, as well as the corresponding
experimental data [55]. It is found that in RCHB+LN calculations, the odd–even mass
differences of most Ca isotopes are overestimated when the pairing strength is chosen to be
V0 = −325 MeV · fm3. Therefore, the pairing strength was readjusted to
V0 = −300 MeV · fm3 in order to reproduce the experimental data.
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Figure 1. The odd–even differences of Ca isotopic chain in the relativistic continuum
Hartree–Bogoliubov+Lipkin–Nogami (RCHB+LN) calculations versus the mass number for
V0 = −325 MeV · fm3 (triangle) and for V0 = −300MeV · fm3 (inverted triangle). The experimental
data [55] (square) and the results in RCHB calculations (circle) are shown for comparison.

4. Results and Discussion

The ground-state properties of even Ca isotopes calculated by RCHB and RCHB+LN
are shown in Figure 2. The results of RCHB+LN with V0 = −325 MeV · fm3 are also shown
for comparison. The binding energies per nucleon BE/A are shown in Figure 2a. It is
found that larger BE/A are given by including the LN correction, while the trend does
not change. The two-neutron separation energies S2n are shown in Figure 2b. In RCHB
results, kinks appear at the traditional magic or submagic numbers N = 20, 28, and 40.
With LN correction, all the amplitudes of these kinks become smaller. At N = 50, however,
there seems no kink for both the RCHB and RCHB+LN, indicating the disappearance of
the traditional magic number N = 50 in Ca isotopes. In addition, in the region of N > 40,
the nuclei become weakly-bound, and the S2n decrease slowly both in the RCHB and
RCHB+LN calculations. Such behavior of S2n indicates the appearance of giant halos in
the Ca isotopes. Moreover, both the RCHB and the RCHB+LN calculations show the two-
neutron drip line of the Ca isotopic chain at N = 60. The root mean square (rms) neutron
radii in even Ca isotopes are plotted in Figure 2c. The rms radii are nearly unchanged with
the LN correction. In addition, from N = 40, the rms radii gradually deviate from the
empirical r0N1/3 formula as the neutron number increases. This behavior also indicates
the possible existence of the halo or giant halo phenomena.
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Figure 2. (color online) The ground-state properties of even Ca isotopes, including (a) the binding
energies per nucleon BE/A, (b) the two-neutron separation energies S2n, and (c) the root mean
square neutron radii Rn obtained from the RCHB and RCHB+LN calculations. The experimental
results (square) of BE/A and S2n, as well as the empirical formula (dotted line) of Rn, are also shown
for comparison.

Figure 3 shows the neutron density distributions of Ca isotopes derived from RCHB
and RCHB+LN calculations. In the region of N > 40, the neutron density distribution of
Ca isotopes with A > 62 are much more diffused than those of 60,62Ca for both the RCHB
and RCHB+LN. Combined with the S2n and Rn results mentioned before, this indicates
that 64−80Ca are halo nuclei but that 62Ca is not, and the LN correction does not change the
range of those with halo.
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Figure 3. (color online) The neutron density distributions of even Ca isotopes obtained from
RCHB+LN for (b) V0 = −325 MeV · fm3 and (c) V0 = −300 MeV · fm3 in comparison with (a)
RCHB results for V0 = −325 MeV · fm3.

To see the impact of the LN correction more clearly, as in Refs. [13,14], we take 66Ca
as an example. Figure 4 shows its single-neutron levels in canonical basis around the
Fermi surface, where the results of the RCHB with V0 = −325 MeV · fm3, RCHB+LN
with V0 = −325 MeV · fm3, and RCHB+LN with V0 = −300 MeV · fm3 are plotted in the
three panels, respectively. Comparison between these three calculations shows that the LN
correction only slightly changes the energies and the occupation probabilities of the levels.
For example, the energy and the occupation probability of the neutron 2d3/2 level with the
largest difference are 2.05 MeV and 6.2% for the RCHB with V0 = −325 MeV · fm3, 1.96
MeV and 7.0% for the RCHB+LN with V0 = −325 MeV · fm3, and 1.87 MeV and 5.2% for
the RCHB+LN with V0 = −300 MeV · fm3, respectively.

Figure 4. (color online) The single-neutron levels around the Fermi surface in the canonical basis for
66Ca versus the occupation probability (v2 for RCHB and w for RCHB+LN) obtained from RCHB+LN
for (b) V0 = −325 MeV · fm3 and (c) V0 = −300 MeV · fm3 in comparison with (a) RCHB results for
V0 = −325 MeV · fm3. The dash-dotted lines indicate the neutron Fermi surfaces. The dotted curves
correspond to the BCS or BCS+LN formula with corresponding average pairing gap.

To further check the influence of the LN correction on the potential giant halo in 66Ca,
the rms radii of each single-neutron level around the Fermi surface in RCHB and RCHB+LN
calculations are compared in Figure 5. The rms radius of the neutron 3s1/2 level is much
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larger than other neutron levels nearby both in RCHB and RCHB+LN. This shows that the
neutron 3s1/2 level plays a crucial role in the giant halo in Ca isotopes, as was pointed out
in Ref. [13]. With LN correction, when the same pairing strength V0 = −325 MeV · fm3

is employed, the rms radii of these single-neutron levels do not change much. Among
them, the rms radius of the neutron 2d5/2 level changes most for about 0.04 fm. In contrast,
when the pairing strength is readjusted to V0 = −300 MeV · fm3, although most of the
radii do not change much, there are considerable changes in those of the neutron 3s1/2,
2d5/2, and 2d3/2 levels. Especially for neutron 3s1/2 level, its rms radius increases from
6.775 fm (RCHB, V0 = −325) and 6.804 fm (RCHB+LN, V0 = −325) to 7.100 fm (RCHB+LN,
V0 = −300).

Figure 5. (color online) The single-particle energies in the canonical basis εcan of each single-neutron
level around the Fermi surface in 66Ca versus its root mean square radius ri.

As shown in Figure 4, there is a large shell gap between the 1g9/2 level and 1 f5/2 level
both in the RCHB and RCHB+LN, which corresponds to the submagic number N = 40.
Thus, one can naturally take the levels below the N = 40 shell gap as the “core”, and
the remaining weakly bound levels and the levels in continuum above the shell gap as
the “halo”. Correspondingly, one can decompose the neutron density ρn(r) into the “core”
part and the “halo” part, as is plotted in Figure 6. The three panels show the results
of the RCHB with V0 = −325 MeV · fm3, RCHB+LN with V0 = −325 MeV · fm3, and
RCHB+LN with V0 = −300 MeV · fm3, respectively. The halo part surpasses the core
part at about r = 8 fm and gradually domains with increasing r in all three calculations,
indicating the halo structure in 66Ca. The neutron numbers in the halo are 6.45 for both
the RCHB and RCHB+LN with V0 = −325 MeV · fm3 and 6.25 for the RCHB+LN with
V0 = −300 MeV · fm3. The results show that the LN correction does not change the
appearance of giant halos in 66Ca. On the one hand, under the same pairing strength, both
the neutron number in the halo and the neutron density distribution of RCHB+LN are
nearly unchanged in comparison with that of RCHB. On the other hand, with the pairing
strength readjusted, the neutron density distribution of the RCHB+LN becomes slightly
more diffused, although the neutron number in the halo becomes a little smaller.

To further analyze the neutron density, the density distributions of several single-
neutron levels in the halo are also depicted in Figure 6. The neutron 3s1/2 level contributes
to the halo most both in the RCHB and RCHB+LN. This can be seen more clearly in
Figure 7, where the relative contributions to the total neutron density of these single-
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neutron levels are plotted. At r = 15 fm, the relative contribution of the neutron 3s1/2 level
is about 50% in the RCHB with V0 = −325 MeV · fm3, about 48% in the RCHB+LN with
V0 = −325 MeV · fm3, and about 55% in the RCHB+LN with V0 = −300 MeV · fm3. Such
a result shows that with LN correction, when the pairing strength is V0 = −325 MeV · fm3,
the neutron 3s1/2 level contributes slightly less to the giant halo in 66Ca. In contrast, when
the pairing strength is readjusted to V0 = −300 MeV · fm3, it contributes more. As the
density distribution of neutron 3s1/2 level is more diffused than other levels nearby (cf.
Figure 6), it is no wonder why the total neutron density becomes more diffused with LN
correction and the readjusted pairing strength.

Figure 6. (color online) The total neutron density distribution of 66Ca, as well as its decompo-
sition into the core and the halo, obtained from RCHB+LN for (b) V0 = −325 MeV · fm3 and
(c) V0 = −300 MeV · fm3 in comparison with (a) RCHB results for V0 = −325 MeV · fm3. Contribu-
tions from several single-neutron levels in the halo are also given.

Figure 7. (color online) The relative contributions of several single-neutron levels in the halo of 66Ca
obtained from RCHB+LN for (b) V0 = −325 MeV · fm3 and (c) V0 = −300 MeV · fm3 in comparison
with (a) RCHB results for V0 = −325 MeV · fm3. The shade areas indicate the total neutron density
in arbitrary units.
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5. Conclusions

In this paper, the impact of the Lipkin–Nogami (LN) method on giant halos has
been investigated within the relativistic continuum Hartree–Bogoliubov (RCHB) theory.
Here, the RHB and RHB+LN equations were solved in a spherical Dirac Woods–Saxon
basis. Reproducing the odd–even mass differences of Ca isotopes, the pairing strength was
readjusted to V0 = −300 MeV · fm3 for RCHB+LN. Comparing the ground-state properties
of Ca isotopes calculated by the RCHB with V0 = −325 MeV · fm3, the RCHB+LN with
V0 = −325 MeV · fm3, and the RCHB+LN with V0 = −300 MeV · fm3, this shows that the
LN correction does not change the range of Ca isotopes with giant halos. Taking 66Ca as
an example, the neutron density distribution obtained with LN correction and readjusted
pairing strength has been found to be slightly more diffused than that of the RCHB, which
can be illustrated by the enlargement of the root mean square radius and the enhancement
of the relative contribution for neutron 3s1/2 level.

Note that present results are limited to spherical halo nuclei, and the influence of
the LN correction on the deformed halo nuclei is a topic to be investigated in the future.
As the LN method is an approximation to the exact particle number projection method,
how the exact particle number projection works on halo nuclei is an interesting topic.
Besides halo phenomenon, neutron skin has also attracted much attention [56–58], and
further investigation on it can be carried out. In addition, studies on odd nuclei are also
important. For instance, in a recent work [48], the even–odd staggering of charge radii in
Hg isotopes has been studied by the DRHBc theory and attributed to shape staggering. The
even–odd staggering of charge radii in Ca isotopes is also interesting, which has attracted
many theoretical efforts [59–63], and thus future work about it based on the DRHBc theory
is welcome.
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Abstract: Bubble nuclei, characterized by a depletion in nucleon density at the nuclear
center, are investigated within the atomic number range 71 ≤ Z ≤ 80 using the De-
formed Relativistic Hartree–Bogoliubov theory in continuum. This study extends previous
investigations, which were limited to even–even isotopes, by incorporating even–odd,
odd–even, and odd–odd nuclei within this range. The extension is achieved by introducing
the blocking effect into the point-coupling approach to ensure self-consistency. Following
previous studies, we define a nucleus as a bubble candidate if the bubble parameter exceeds
B�

p = 20%, and identify five bubble nuclei in both even-Z and odd-Z nuclei groups, based
on the highest B�

p values. The formation of bubble structures is confirmed through an
analysis of proton single-particle energy levels of the most centrally depleted nuclei across
four categories: even–odd, even–even, odd–even, and odd–odd.

Keywords: bubble nuclei; neutron drip line

1. Introduction

The exploration of atomic nuclei, particularly those near the neutron drip line, has
progressed significantly in recent years, driven by advancements in experimental facilities
worldwide [1,2]. The discovery of over 3000 isotopes has broadened our understanding
of the nuclear landscape, revealing previously uncharted regions of a nuclear structure.
These findings play a crucial role in deepening our knowledge of the nuclear structure
and the evolution of heavy nuclei. However, despite these advancements, the evolution
of nuclear density distributions remains incompletely understood, particularly regarding
the shape decoupling effect, which leads to distinct deformations between the core and the
halo, and the existence of bound nuclei beyond the neutron drip line.

A key issue in nuclear structure research is understanding exotic nuclei, which ex-
hibit unique phenomena such as bubble structures and shape coexistence in their ground
states [3]. Bubble nuclei, in particular, arise when the central region of the nucleus exhibits
a substantial depletion in nucleon density. These nuclei, characterized by reduced proton
and neutron densities, have been extensively studied theoretically. It has been suggested
that bubble formation originates from the reduced occupation of s states near the Fermi
surface, which suppresses the central density [3–12]. Additionally, pairing correlations and
nuclear deformation are known to further weaken the bubble structure [3,6,13–17].

In this study, we employ the deformed relativistic Hartree–Bogoliubov theory in
continuum (DRHBc) to investigate the nuclear density distributions and internal structure.

Particles 2025, 8, 37 https://doi.org/10.3390/particles8020037
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This framework is well suited for studying exotic nuclear phenomena, such as neutron-rich
nuclei and bubble structures, as it incorporates deformation and treats self-consistently
continuum effects and pairing [18–20].

This paper is organized as follows. In Section 2, we introduce the DRHBc framework
and discuss its application to bubble structures. Section 3 presents our results on bubble
nuclei with atomic numbers ranging 71 ≤ Z ≤ 80, identifying those with the most
significant central density depletion and analyzing their structural properties. Finally,
a conclusion of our findings is provided in Section 4.

2. Theoretical Framework

2.1. DRHBc

In this study, we employ the relativistic mean-field (RMF) framework to investi-
gate nuclear structure and density distributions while incorporating pairing correlations.
The blocking effect is included to account for the presence of unpaired nucleons in odd-
mass and odd–odd nuclei. This modifies the pairing potential and alters single-particle
occupation probabilities, which in turn affect central density depletion in bubble structures.
The Lagrangian density used in our calculations is given by [21]

L = ψ̄
(
iγμ∂μ − m

)
ψ − 1

2
αS(ψ̄ψ)(ψ̄ψ)− 1

2
αV(ψ̄γμψ)(ψ̄γμψ)

− 1
2

αTV(ψ̄�τγμψ)(ψ̄�τγμψ)− 1
3

βS(ψ̄ψ)3 − 1
4

γS(ψ̄ψ)4

− 1
4

γV
[
(ψ̄γμψ)(ψ̄γμψ)

]2 − 1
2

δS∂ν(ψ̄ψ)∂ν(ψ̄ψ)

− 1
2

δV∂ν(ψ̄γμψ)∂ν(ψ̄γμψ)− 1
2

δTV∂ν(ψ̄�τγμψ)∂ν(ψ̄�τγμψ)

− 1
4

FμνFμν − e
(1 − τ3)

2
ψ̄γμψAμ,

(1)

where m is the nucleon mass, and αS, αV , and αTV are the coupling constants for four-
fermion contact interactions. The terms with βS, γS, and γV account for density-dependent
effects, while those with δS, δV , and δTV describe the finite-range effects. Aμ and Fμν

represent the four-vector potential and the field strength tensor of the electromagnetic
field, respectively. The subscripts S, V, and TV denote scalar, vector, and isovector compo-
nents. Further details on the DRHBc theory can be found in Refs. [19,20], and numerical
implementations are described in Ref. [21].

Both automatic and orbital-fixed blocking methods are employed in the DRHBc
framework. The automatic method iteratively excludes the lowest-energy quasiparticle
state, ensuring self-consistency during convergence. The orbital-fixed method, on the
other hand, enforces the occupation of a specific single-particle state. These approaches
enable reliable calculations for odd-mass and odd–odd nuclei. Applying the mean-field
approximation to the Lagrangian density and performing a Legendre transformation,
we derive the mean-field Hamiltonian density. By employing the variational method
and the Bogoliubov transformation, we obtain the relativistic Hartree–Bogoliubov (RHB)
equation [22], given by

(
hD − λ Δ
−Δ∗ −h∗D + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (2)

where hD is the Dirac Hamiltonian, λ is the chemical potential, Δ represents the pairing
potential, and Uk, Vk are the quasiparticle wavefunctions.
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To account for nuclear deformation, the DRHBc framework expands the density
distribution in terms of Legendre polynomials as

f (r) = ∑
λ

fλ(r)Pλ(cos θ), λ = 0, 2, 4, . . . . (3)

where fλ(r) are the expansion coefficients, and Pλ(cos θ) are the Legendre polynomials.
In odd-mass and odd–odd nuclei, the blocking effect changes the pairing field by

excluding specific quasiparticle states. This leads to modifications in single-particle occupa-
tion probabilities and the energy spectrum. The automatic blocking method is particularly
effective in cases where a well-defined lowest quasiparticle state exists, facilitating rapid
convergence. However, when several low-energy quasiparticle states are closely spaced,
the orbital-fixed blocking method is used to investigate the impact of blocking different
states on nuclear properties. This ensures a robust and reliable description of pairing
suppression and structural evolution in exotic nuclei [20].

2.2. Bubble Parameter

Proton bubble nuclei are identified by a significant reduction in central proton density
relative to the maximum proton density within the nucleus. The central density deple-
tion is quantified using the proton depletion fraction, which serves as a key parameter
for characterizing bubble structures. In previous studies [6,8,9,14], the bubble parameter
was defined as the ratio of the maximum proton density, which is uniquely defined and
does not depend on the direction. However, for deformed nuclei described within the
DRHBc framework, the proton density distribution varies with the polar angle θ, leading
to anisotropic density profiles. Consequently, the maximum proton density also depends
on θ, making the original definition unsuitable for deformed nuclei.

To address this issue, a modified bubble parameter B�
p was introduced in the previous

study [3]. This incorporates an angle-averaged maximum proton density, providing a more
consistent measure of central density depletion in deformed nuclei:

B�
p ≡

(
1 − ρp,c

ρ̄p,max

)
× 100 [%], (4)

where the angle averaged maximum proton density ρ̄p,max is defined as

ρ̄p,max =

∫
ρp(r, θ)δ(r − rmax(θ))dV∫

δ(r − rmax(θ))dV
. (5)

Here, rmax(θ) denotes the radial coordinate where the proton density reaches its lo-
cal maximum for a given θ. This formulation ensures that ρ̄p,max represents an effective
maximum density, accounting for directional variations in deformed nuclei. For spherical
nuclei, where the proton density distribution is isotropic, the bubble parameter B�

p natu-
rally reduces to its conventional definition, i.e., B�

p = Bp, ensuring consistency with the
previous studies.

3. Results

Using Equation (4), we systematically calculate the bubble parameter for nuclei with
71 ≤ Z ≤ 80 described in DRHBc and analyze the result. Table 1 represents the list
of nuclei, which show the highest 5 bubble parameter B�

p for even-Z and odd-Z nuclei,
respectively. We adopt the point coupling density functional (PC-PK1) [23] to extend and
compare the previous study. The neutron numbers of the nuclei in Table 1 are close to
the neutron magic number 184, with the bubble parameter exceeding 28%. Compared to
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previous study [3], which identified Hf as the most depleted nucleus, these results reveal
that the presence of unpaired nucleons, particularly in odd-Z or odd-N nuclei, significantly
contributes to the bubble parameter. In other words, this finding aligns with earlier studies,
which indicates that paired nucleons tend to limit the bubble structure. For even-Z nuclei,
the nucleus with the most central depletion is Hg, while for odd-Z nuclei, Lu exhibits the
most central depletion.

Additionally, we observe the effect of quadrupole deformation (β2) on the bubble
parameter. For even-Z nuclei, a comparison between 258W and 253W indicates that 253W
exhibits a smaller bubble parameter. Note that 258W has a magic neutron number, but 253W
has a non-magic neutron number. Similarly, for odd-Z nuclei, a comparison between 257Ta
and 256Ta shows that 256Ta, with an odd neutron number, has a lower value. These effects
can be attributed to the quadrupole deformation (β2), which reduces the bubble parame-
ter. Additionally, the presence of an unpaired nucleon can alter pairing correlations and
subsequently influence the bubble parameter, consistent with previous studies [3,6,13–17].

Table 1. List of the nuclei which show the highest 5 bubble parameters B�
p for even-Z and odd-Z

nuclei, respectively.

Even-Z Nuclei Odd-Z Nuclei
Nuclei β2 B∗

p[%] Nuclei β2 B∗
p[%]

263Hg 0.000 34.6 255Lu 0.000 30.1
261Hg 0.000 32.1 257Ta 0.002 29.6
256Hf 0.000 28.9 254Re 0.087 29.2
258W 0.000 28.3 256Ta 0.031 28.6
253W 0.086 28.2 259Re 0.003 28.5

The density distributions of 263Hg, 256Hf, 255Lu, and 254Re are presented in Figure 1,
representing even–odd, even–even, odd–even, and odd–odd nuclei, respectively. The scaled
density distributions of protons ρp A/Z and neutrons ρn A/N are provided to facilitate
comparison with the total baryon density. Since nuclear interactions depend on the nucleon
composition, direct comparisons between different nuclides are challenging due to varia-
tions in the mass numbers, which correspond to different nuclear systems. Nevertheless,
a qualitative analysis provides useful insights. First, both 255Lu and 256Hf have a neutron
magic number of 184. Compared to the other two nuclides, their neutron density distribu-
tions appear relatively smooth. This suggests that deviation from a neutron magic number
significantly affects the overall nuclear density distribution. Furthermore, an analysis of
proton density distributions indicates that both odd and even proton numbers consistently
result in lower central densities. However, inherent differences between these nuclear
systems make direct quantitative comparisons challenging.

Figure 2 presents the proton single-particle levels for the ground states of 263Hg, 256Hf,
255Lu, and 254Re. The states above the Fermi surface appear due to the inclusion of the
pairing potential in the DRHBc framework. For the spherical nuclei 263Hg, 256Hf, and 255Lu,
only the l = 0 orbital contributes to the central density because angular momentum l is
a conserved quantum number. In contrast, 254Re exhibits slight quadrupole deformation
(β2 = 0.087), leading to the splitting of single-particle states. Despite this deformation,
a low occupation probability of 3s orbital is observed in all nuclei, resulting in a depleted
central proton density. For even-Z nuclei, the 1s and 2s states are fully occupied because
their energy levels lie far below the Fermi surface, consistent with previous findings [3].
In odd-Z nuclei, however, one proton occupies either the 11/2− or 9/2− state near the
Fermi surface with an occupation probability of 0.5, rather than the 1/2+ state. These
high-angular-momentum states (l > 9/2) contribute minimally to the central density due
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to their spatial distribution, effectively acting as blocked protons. This suggests that a lower
central density reduces destabilizing interactions between the surface and center, leading
to a more stable nuclear structure. In other words, structures with lower central proton
densities tend to be more stable than those with denser centers.

Figure 1. Density profiles for 263Hg, 255Lu, 256Hf, 254Re. For comparison with the total baryon density,
the scaled proton density ρp A/Z and neutron density ρn A/N are also displayed.

In the case of the deformed nucleus 254Re, the angular momentum l is not a good
quantum number, but its projection onto the symmetry axis remains well defined. Con-
sequently, the 1/2+ states in deformed nuclei can still contribute to the central density.
The occupancy of the s state in deformed nuclei is estimated using the formalism from [24]:

NDRHBc
nlj = 〈Ψ|N̂nlj|Ψ〉 = 〈Ψ|∑

m
c†

njlmcnjlm|Ψ〉, (6)

where m stands for the total angular momentum projection on the symmetry axis. For 254Re,
as shown in Figure 2, the occupation of 3s states remains low, leading to a depleted central
region. Both 255Lu, and 254Re are odd-Z nuclides, exhibiting the odd-proton blocking
effect. As previously mentioned, 254Re features more single-particle levels in its ground
state than 263Hg, 256Hf, and 255Lu. This is attributed to quadrupole deformation, which
alters the nuclear structure and enables the inclusion of the 1/2+s state. These results
suggest that in odd-Z nuclides, nuclear deformation influences the bubble structure but
does not necessarily suppress it, instead modifying the spatial distribution of nucleons
within the nucleus.
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Figure 2. Proton single-particle levels near the Fermi surface for 263Hg, 255Lu, 256Hf, and 254Re. The
solid line means the positive-parity state and dashed line means the negative parity. Only 1/2+ states
contribute to the s states. Note that the occupation probability of the 3s state of the near Fermi surface
is low.

4. Conclusions

In this study, we systematically calculated the bubble parameter for nuclei with
71 ≤ Z ≤ 80, extending the scope of the previous research [3]. We first identified the
five nuclei with the highest bubble parameter in both even-Z and odd-Z nuclei groups.
These ten nuclei were found to be either spherical or only slightly deformed, consistent
with previous findings that nuclear deformation weakens the bubble structure. Next, we
selected 263Hg, 256Hf, 255Lu, and 254Re as representative examples of even–odd, even–even,
odd–even, and odd–odd bubble nuclei. These nuclei were analyzed in detail through their
density distributions and proton single-particle levels. As anticipated from previous studies,
the depletion in central density is primarily driven by lower occupations of s states near
the Fermi surface. Furthermore, our results emphasized that that quadrupole deformation
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(β2) plays a critical role in moderating the bubble structure, with more deformed nuclei
exhibiting weaker central density depletion. Additionally, for odd-Z nuclei such as 255Lu
and 254Re, the proton blocking effect was observed, influencing the distribution of single-
particle levels and contributing to the distinct characteristics of central density depletion in
these nuclei. These findings provide further insight into the interplay between deformation,
single-particle structure, and central density depletion, advancing our understanding of
bubble structures in exotic nuclei.
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Abstract: We investigated the reaction Q-value (Qα) for the α decay of Tl, Bi, and At
isotopes using the deformed relativistic Hartree–Bogoliubov theory in continuum (DRHBc)
with the covariant density functional PC-PK1. The α decay half-lives of Tl, Bi, and At
isotopes are evaluated using various empirical formulas, based on both experimental Qα

and those obtained from DRHBc calculations. The calculated Qα and α decay half-lives are
compared with experimental data. On the basis of these results, we also predicted the α

decay half-lives of isotopes for which experimental data are unavailable.

Keywords: deformed relativistic Hartree–Bogoliubov theory in continuum (DRHBc); α

decay half-lives; empirical formula

1. Introduction

Various nuclear decay modes have been experimentally observed, including α decay,
β decay, proton decay, neutron decay, spontaneous fission, and electron capture [1]. Among
these, α decay is one of the most crucial decay modes, widely recognized as a key tool
for investigating unstable and neutron-deficient isotopes, as well as superheavy elements.
Since its discovery by Becquerel in 1896, α decay has become a major research topic in
nuclear physics. This decay mode also provides essential insights into the structure and
stability of atomic nuclei, as well as the mechanisms behind decay. Additionally, α decay
plays a crucial role in the synthesis of superheavy elements, providing valuable insights for
predicting and understanding the existence of specific elements. For example, it enables
the prediction of the half-lives of superheavy elements and the discovery of new decay
pathways. As such, α decay remains a central focus of various nuclear physics research.

Owing to the significant advancements in experimental technology, substantial
progress has been made in both the experimental [2,3] and theoretical [4,5] aspects of α

decay. Experimentally, various heavy nuclei have been successfully discovered through the
analysis of alpha decay chains in recent years. For example, 214U, a new α-emitting nucleus,
has been successfully produced through the 182W(36Ar, 4n)214U reaction [2]. Theoretically,
several empirical formulas have been developed to study α decay half-lives, including the
Royer formula [6], AKRA [7], Viola–Seaborg–Sobiczewski (VSS) formula [8,9], Sobiczewski–
Parkhomenko (SP) formula [10], Universal Decay Law (UDL) [11,12], and others.

Qα is one of the significant characteristic quantities of an alpha-emitting nucleus. It is
given as follows:

Qα = Eb(Z − 2, N − 2)− Eb(Z, N) + Eb(2, 2), (1)

where Eb is the binding energy of the nucleus, and the binding energy of 4He (Eb(2,2)) is
28.30 MeV.
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The nuclear masses of over 2000 nuclei have been experimentally measured. However,
α decay is still anticipated to occur in the vast, unexplored regions of the nuclear chart,
which remain beyond the reach of experimental techniques in the near future. Therefore, a
detailed analysis of Qα must depend on reliable theoretical nuclear mass models.

For addressing the mentioned issue, a well-refined and state-of-the-art relativistic
nuclear model is essential. This model should simultaneously account for the deformation,
pairing correlations, and continuum effects within a microscopic framework capable of
covering the entire nuclear mass range. In this context, the deformed relativistic Hartree–
Bogoliubov theory in continuum (DRHBc), based on point-coupling density functionals,
has been developed [13,14]. The DRHBc theory has been shown to provide a robust
description of nuclear masses with high predictive power [15,16], and it has also been
applied to study the nuclear structure of various isotopes [17–25].

Generally, even–even nuclei are more suitable for α decay studies due to their abundant
experimental data, well-defined decay paths, and theoretical simplicity. In Ref. [26], the α

decay of even–even actinides and super-heavy nuclei with Z ≥ 90 was carefully analyzed.
Additionally, in our previous study [27], we investigated the α-decay half-lives of even–
even nuclei in the range from W to U using DRHBc theory and the semiclassical WKB
approximation. In this article, we investigate the α decay half-lives of Tl, Bi, and At isotopes
using empirical formulas and the DRHBc theory with the PC-PK1 density functional [28].
The article is organized as follows. Section 2 introduces a brief overview of the DRHBc
theory and the empirical formulas used in this study, along with the numerical details for
DRHBc calculations. The results and discussions for Tl, Bi, and At isotopes are presented
in Section 3. Finally, the summary and conclusions are provided in Section 4.

2. Theoretical Framework

2.1. Deformed Relativistic Hartree–Bogoliubov Theory in Continuum

The detailed formalism of the DRHBc theory can be found in Refs. [29–31]. Here, we
provide only a brief overview of the formalism of the DRHBc theory. In the DRHBc theory,
the relativistic Hartree–Bogoliubov (RHB) equation [32] is expressed as follows.

(
hD − λ Δ
−Δ∗ −h∗D + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
. (2)

Here, λ is the Fermi energy, and Ek and (Uk, Vk)
T are the quasiparticle energy and quasipar-

ticle wave function. In the coordinate space, the Dirac Hamiltonian hD can be defined as

hD(r) = α · p + V(r) + β[M + S(r)], (3)

where α and p are the Dirac matrices and the momentum operator, M is the nucleon mass,
and V(r) and S(r) are the vector and scalar potentials, respectively. The paring potential Δ
is expressed in terms of the pairing tensor κ(r, r

′
) as follows:

Δ(r, r
′
) = V(r, r

′
)κ(r, r

′
), (4)

using a density-dependent zero range force

V(r, r
′
) =

V0

2
(1 − Pσ)δ(r − r

′
)

(
1 − ρ(r)

ρsat

)
. (5)

Here, Pσ is the spin exchange operator, and ρsat is the nuclear saturation density.
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The total energy can be computed as

Etot = ∑
k>0

(λτ − Ek)v2
k −

1
2

∫
d3rκ(r)Δ(r) + Ec.m.

−
∫

d3r
(

1
2

αSρ2
S +

1
2

αVρ2
V +

1
2

αTVρ2
TV +

2
3

βSρ3
S +

3
4

γSρ4
S +

3
4

γVρ4
V

+
1
2

δSρSΔρS +
1
2

δVρVΔρV +
1
2

δTVρTVΔρTV +
1
2

ρpeA0
)

, (6)

where Ek is the single-particle energy, v2
k is the occupation probability, e is the unit of

charge, and A0 is the electromagnetic field, respectively. The coupling constant αi for
the four-fermion terms is specified by the superscripts (i = S, V and T), which stand
for the scalar, vector, and isovector channels, respectively. βS, γS, and γV are the higher-
order terms, while δi refers to the gradient terms. Finally, Ec.m. denotes the center of mass
correction energy.

For the numerical calculations of the Tl, Bi, and At isotopes, we employ the energy cut-
off E+

cut = 300 MeV and the angular momentum cutoff Jmax = (23/2)h̄ for the Dirac Woods–
Saxon basis. The pairing strength V0 = −325.0 MeV fm3, a pairing window of 100 MeV,
and a saturation density of ρsat = 0.152 fm−3 are taken, respectively. The numerical details
can be found in Refs. [13,14].

2.2. Empirical Formula for α Decay Half-Lives

Empirical formulas for the α decay half-lives typically depend on the proton number
(Z), the mass number (A), and the reaction Q-value (Qα) for the α decay. The most crucial
factor in the α decay process of the heavy nuclei is the accurate determination of Qα, as it
reflects the structure of the heavy nuclei through the binding energy. The significance of
Qα is clearly mentioned in Refs. [8,33]. For Qα, we use both experimental data and DRHBc
mass table data, particularly when experimental Qα are unavailable.

2.2.1. Royer Formula

The Royer formula [6] is given by

log10 T1/2 = a + bA1/6
√

Z +
cZ√
Qα

, (7)

where A, Z, and Qα are the mass number, proton number, and the reaction Q-value for the
α decay, respectively. Additionally, the parameters a, b, and c are a = −25.68, b = −1.1423,
and c = 1.592 for odd Z–even N nuclei, and a = −29.48, b = −1.113, and c = 1.6971 for
odd Z–odd N nuclei, respectively [34].

2.2.2. AKRA Formula

Akrawy and Poenaru presented [7] a new expression for calculating the α decay
half-life by incorporating nuclear isospin asymmetry I = (N − Z)/A.

log10 T1/2 = a + bA1/6
√

Z +
cZ√
Qα

+ dI + eI2. (8)

For the odd Z–even N nuclei case (odd Z–odd N nuclei case), the parameters a, b, c, d,
and e are as follows: a = −31.79248 (−26.27896), b = −1.07636 (−1.20130), c = 1.75354
(1.65906), d = −2.22627 (−0.08411), and e = 0.39378 (67.59728) [35].
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2.2.3. Viola–Seaborg–Sobiczewski (VSS) Formula

The VSS [8,9] formula proposed by Sobiczewski extended the original Viola–Seaborg
formula to better account for heavy and superheavy nuclei are widely used to calculate
and predict the α decay half-lives.

log10 T1/2 =
aZ + b√

Qα
+ cZ + d + hlog, (9)

where a = 1.66175, b = −8.5166, c = −0.20228, and d = −33.9069, respectively. The term
hlog describes the hindrance effects related to odd-Z and/or odd-N. Its value is 0.772 for
odd-Z even-N nuclei and 1.114 for odd-Z odd-N nuclei [36].

2.2.4. Parkhomenko–Sobiczewski (SP) Formula

The Parkhomenko–Sobiczewski (SP) formula, which is a phenomenological expression
used to explain the α decay half-lives of nuclei heavier than 208Pb, was introduced by
Parkhomenko and Sobiczewski [10]. The (SP) formula is given by

log10 T1/2 =
aZ√

Qα − Ei
+ bZ + c, (10)

where the values of the coefficients [36] are a = 1.5372, b = −0.1607, and c = −36.573. The
Ei represents the average excitation energy, with values of 0.113 and 0.284 for odd–even
and odd–odd nuclei, respectively.

2.2.5. Universal Decay Law (UDL) Formula

Qi et al. [11,12] derived a linear universal decay law (UDL) based on an R-matrix
theory that describes the microscopic mechanism of α emission and is applicable to α decay.
The UDL formula is expressed as follows:

log10 T1/2 = aZpZd

√
μ

Qα
+ b

√
μZpZd(A1/3

p + A1/3
d ) + c. (11)

Here, μ = Aa Ad/(Aa + Ad), where Aa denotes the mass number of the emitted alpha
particle and Ad represents the mass number of the daughter nucleus. In Equation (11),
the coefficients for the UDL formula, as provided in Ref. [35], are as follows: a = 0.4314,
b = −0.4087, and c = −25.7725.

3. Results

It is well-known that the α decay half-lives are highly sensitive to Qα. Therefore,
selecting an accurate Qα is crucial for making reliable predictions. First, we examined
the Qα of the Tl, Bi, and At by the DRHBc theory. In Figure 1, the Qα for Tl, Bi, and
At obtained from the DRHBc calculations are plotted against the neutron number, along
with the available experimental data [37]. Additionally, for a quantitative comparison,
we present the differences between the calculated results and the experimental data, with
uncertainties represented by standard deviation of less than 1.14, 1.03, and 0.95 MeV for Tl,
Bi, and At, respectively, as shown in Figure 1.
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Figure 1. Qα for (a) Tl, (b) Bi, and (c) At isotopes determined by DRHBc calculations. (d) The
difference between the calculated results and the experimental data. They are compared with
available experimental data taken from Ref. [37]. The numbers in parentheses stand for standard
deviation in MeV to the data [37].

The α decay half-lives calculated using five empirical formulas (AKRA, Royer, SP,
UDL, and VSS) are presented in Figure 2. The results were obtained using the experimental
QEXP

α values and the QDRHBc
α values derived from DRHBc calculations, as shown in panels

(a) and (b) of Figure 2, respectively. For comparison with the experiment, we use the
experimental α decay half-lives from NNDC [38]. Since multiple decay modes can exist for
each nucleus, we consider only 17 experimental data points where the branching ratio of α

decay is close to 100%. The logarithmic differences between the experimental half-lives
and the calculated values are shown in Figure 2c,d. Additionally, the calculated α decay
half-lives are listed in Tables 1 and 2. Table 1 shows the results derived using experimental
QEXP

α values, while Table 2 displays the results obtained using QDRHBc
α values from DRHBc

calculations. The standard deviations σ between the experimental data and the calculated
results, as defined by

σ =

√
1
N

Σ(log10TEXP
1/2 − log10Tcal

1/2)
2, (12)

are provided in the last row of Tables 1 and 2. The Qα calculated based on the DRHBc
masses has uncertainty due to the deviation from experimental values (σ = 2.2 MeV). This
uncertainty can also affect the accuracy of the α decay half-life calculated using QDRHBc

α .
The results are summarized in Table 2.

The predicted α decay half-lives of Tl (Z = 81), Bi (Z = 83), and At (Z = 85) isotopes,
calculated using the VSS and SP formulas—two models with the smallest standard devi-
ations among the five models, as shown in Table 2—are shown in Figure 3a,b, with Qα

values taken from AME2020 [37] and the DRHBc mass table. We also compared the results
obtained using Qα values derived from AME2020 and the DRHBc mass table. For a given
isotope chain, the calculated half-lives generally increase as the neutron number increases.
This trend decreases near the N = 126 shell closure and then increases again.
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Table 1. The calculated half-life of α decay using selected empirical formulas. The experimental data
for QEXP

α and half-lives are taken from AME2020 [37] and NNDC [38], respectively. The units of
QEXP

α and log10 T1/2 are MeV and seconds (s), respectively.

log10 T1/2

α Transition QEXP
α EXP AKRA Royer SP UDL VSS

184Bi → 180Tl 8.22 −1.89 −3.71 −4.53 −3.56 −5.23 −4.45
186Bi → 182Tl 7.76 −1.83 −2.21 −3.13 −2.15 −3.85 −3.12
187Bi → 183Tl 7.76 −1.43 −3.23 −3.12 −2.68 −3.87 −3.46
188Bi → 184Tl 7.26 −1.22 −0.47 −1.49 −0.49 −2.23 −1.57
189Bi → 185Tl 7.27 −0.16 −1.56 −1.60 −1.10 −2.26 −1.92
191At → 187Bi 7.82 −2.77 −2.55 −2.57 −2.07 −3.27 −2.87
192At → 188Bi 7.70 −1.94 −1.17 −2.13 −1.12 −2.87 −2.14
193At → 189Bi 7.57 −1.55 −1.74 −1.82 −1.27 −2.47 −2.09
194At → 190Bi 7.45 −0.54 −0.25 −1.33 −0.29 −2.09 −1.37
195At → 191Bi 7.34 −0.51 −0.97 −1.11 −0.50 −1.72 −1.35
212At → 208Bi 7.82 −0.50 −0.25 −2.94 −1.51 −3.62 −2.51
213At → 209Bi 9.25 −6.90 −7.48 −6.93 −6.00 −7.75 −6.70
214At → 210Bi 8.99 −6.25 −3.49 −6.46 −4.91 −7.08 −5.71
215At → 211Bi 8.18 −4.43 −4.41 −4.14 −3.15 −4.81 −3.91
216At → 212Bi 7.95 −3.52 −0.35 −3.45 −1.94 −4.12 −2.91
217At → 213Bi 7.20 −1.49 −1.04 −1.07 −0.01 −1.58 −0.87
218At → 214Bi 6.88 0.11 3.59 0.36 1.85 −0.36 0.63

standard deviation 1.55 1.11 1.09 1.61 1.16

Table 2. The same as Table 1, but with results obtained using QDRHBc
α from the DRHBc calculations.

The standard deviation (±σ) are the results obtained using QDRHBc
α (±σ) (σ = 2.2), respectively.

log10 T1/2

α Transition QDRHBc
α EXP AKRA Royer SP UDL VSS

184Bi → 180Tl 8.04 −1.89 −3.18 −3.98 −3.02 −4.69 −3.94
186Bi → 182Tl 7.15 −1.83 −0.16 −1.03 −0.08 −1.79 −1.19
187Bi → 183Tl 6.75 −1.43 0.52 0.28 0.76 −0.31 −0.13
188Bi → 184Tl 6.77 −1.22 1.36 0.38 1.36 −0.39 0.15
189Bi → 185Tl 6.27 −0.16 2.57 2.15 2.70 1.66 1.75
191At → 187Bi 8.00 −2.77 −3.15 −3.11 −2.62 −3.84 −3.40
192At → 188Bi 7.76 −1.94 −1.37 −2.33 −1.32 −3.08 −2.33
193At → 189Bi 7.92 −1.55 −2.94 −2.91 −2.37 −3.62 −3.16
194At → 190Bi 7.77 −0.54 −1.30 −2.41 −1.35 −3.14 −2.36
195At → 191Bi 7.83 −0.51 −2.69 −2.67 −2.08 −3.35 −2.88
212At → 208Bi 7.67 −0.50 0.22 −2.46 −1.04 −3.15 −2.07
213At → 209Bi 10.27 −6.90 −9.97 −9.19 −8.27 −10.11 −8.91
214At → 210Bi 9.86 −6.25 −5.61 −8.63 −7.01 −9.21 −7.71
215At → 211Bi 9.18 −4.43 −7.34 −6.79 −5.82 −7.59 −6.52
216At → 212Bi 7.96 −3.52 −0.37 −3.48 −1.96 −4.14 −2.93
217At → 213Bi 7.46 −1.49 −2.03 −1.97 −0.91 −2.52 −1.75
218At → 214Bi 6.33 0.11 5.86 2.68 4.15 1.93 2.77

standard deviation 2.33 1.77 1.75 2.11 1.62
standard deviation (+σ) 6.07 6.62 5.59 7.38 6.24
standard deviation (−σ) 11.12 9.81 10.98 9.29 9.26
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Figure 2. The α decay half-lives obtained of Bi and At isotopes by different five empirical formulas
(AKRA, Royer, SP, UDL, and VSS) using (a) the experimental QEXP

α values and (b) the QDRHBc
α

values derived from DRHBc calculations. (c,d) The logarithmic differences between the experimental
half-lives and the calculated values.

Figure 3. The predicted α decay half-lives in logarithmic form for Tl (Z = 81), Bi (Z = 83), and At
(Z = 85) isotopes using the VSS and SP formula with (a) available experimental QEXP

α and (b) the
QDRHBc

α obtained from DRHBc calculations.

In Figure 4a, the logarithmic differences of α decay half-lives for Tl (Z = 81), Bi (Z = 83),
and At (Z = 85) isotopes between the results obtained using Qα values derived from
AME2020 and those derived from the DRHBc mass table versus the mass number of the
parent nucleus are presented. The results of the two formulas, VSS and SP, are nearly
identical, except for 208Bi. Additionally, the differences with respect to (QEXP

α − QDRHBc
α )

are presented in Figure 4b. We can observe that, as the value of (QEXP
α − QDRHBc

α ) increases,
the logarithmic differences between the results predicted using Qα values from AME2020
and those from the DRHBc mass table also increase, particularly when it exceeds 2.0. Finally,
we can see that the difference between the results of VSS and SP formulas increases. We
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will calculate and predict the α decay half-lives using the predicted densities in the DRHBc
theory within the WKB approximation framework [39,40] in the following study.

Figure 4. The logarithmic differences of α decay half-lives for Tl (Z = 81), Bi (Z = 83), and At (Z = 85)
isotopes, obtained using Qα values derived from AME2020 and using QDRHBc

α . (a) The DRHBc mass
table versus the mass number of the parent nucleus and (b) (QEXP

α − QDRHBc
α ).

4. Summary

In this work, we evaluated the reaction Q-value (Qα) for the α decay of Tl, Bi, and
At isotopes using the DRHBc theory and compared the results with experimental data
from AME2020. Since multiple decay modes exist for each nucleus, we considered only
17 experimental data points where the branching ratios for α decay modes are almost
100%. The α decay half-lives of these isotopes were calculated using five different empirical
formulas, based on both experimental Qα values and those obtained from the DRHBc
calculations. The calculated α decay half-lives were also compared with experimental
data from NNDC. The VSS and SP formulas have the smallest standard deviations (σ)
between the calculated results and the experimental data among the five models. Based
on these results, we calculated and predicted the α decay half-lives of Tl, Bi, and At
isotopes using VSS and SP formulas. In the future study, we will calculate and predict the
α decay half-lives using the densities obtained from the DRHBc theory within the WKB
approximation framework.
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Abstract: By adopting the deformed relativistic Hartree–Bogoliubov theory in continuum
(DRHBc) with the point-coupling density functional PC-PK1, we investigate the shell
structure evolution of even–even U, Pu, and Cm isotopic chains from the proton drip
line to the neutron drip line. The Fermi energy λn, two-neutron separation energy S2n,
two-neutron shell gap δ2n, and quadrupole deformation β2 all indicate the major shell
closures at N = 126, 184, and 258. The emergence of sudden drops between U and Pu
isotopic chains in the proton Fermi energies λp around these neutron shell closures is a
consequence of the designation convention when the pairing collapse at the spurious shell
closure Z = 92 occurs. The fine structure in the two-neutron shell gap, like negative δ2n,
may be related to the ground-state shape transition. Finally, the subshells indicated by the
small-scale peaks in the two-neutron shell gaps can be well understood by the deformed
gaps in the single-neutron levels obtained by DRHBc theory.

Keywords: DRHBc; shell structure; neutron drip line; single-particle levels; deformed shell

1. Introduction

The shell structure evolution of nuclei has been extensively studied in many efforts,
playing an important role in nuclear physics and astrophysics [1,2]. Currently, many nuclear
experimental facilities aiming at the exploration of exotic nuclei away from the β-stability
valley are in use or under construction, such as the High-Intensity Heavy Ion Accelerator
Facility (HIAF) in China [3], the Radioactive Ion Beam Factory (RIBF) in Japan [4], and the
Facility for Rare Isotope Beams (FRIB) in the United States [5]. Over the years, experiments
have led to a series of discoveries concerning the occurrence of new magic numbers and
the disappearance of traditional magic numbers, for instance, evidence for shell closures
at N = 32, 34 in 54Ti [6] and 54Ga [7], and the local N = 40 shell closure in the magic Ni
isotopic chain [8].

Theoretically, the density functional theory provides a microscopic and self-consistent
way to globally study the structure of atomic nuclei across the nuclear landscape [9,10].
For non-relativistic approaches, the calculation mass table has been conducted using
Skyrme [11–14] or Gogny [15–17] Hartree–Fock–Bogoliubov density functional theories.
For relativistic approaches, covariant density functional theory (CDFT) can provide a
self-consistent description and has made significant advances as well [10,18–24].

Based on CDFT, considering pairing correlations, continuum effects, and axial defor-
mation degrees of freedom simultaneously, the deformed relativistic Hartree–Bogoliubov
theory in continuum (DRHBc) was developed [25,26]. Currently, DRHBc theory, grounded
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on the point-coupling density functional PC-PK1 [27], has evolved strategies and technolo-
gies for even-Z nuclei [28,29]. It has recently been applied to construct mass tables for
even-Z nuclei in Refs. [30,31], and mass tables for odd-Z nuclei are currently in develop-
ment. Many interesting topics have been discussed along this line. Specifically, DRHBc
theory has been used to study the ground state properties of Z = 6 isotopic chains, with a
particular focus on the study of the neutron halo phenomenon [32]. In addition, DRHBc
theory has been applied to the research of the neutron drip line nuclei of superheavy
nuclear regions with Z = 106, 108, 110; even–even neutron-rich regions with Z = 8 to Z = 20;
and the position of neutron drip line nuclei for isotopic chains with Z = 50 to Z = 70 [33–35].
Moreover, DRHBc theory has successfully described the odd–even staggering and the kink
structure in the charge radii of mercury isotopic chains [36]. It is worth noting that DRHBc
theory has also been used to explore changes in quadrupole deformation with neutron
number in Te, Xe, and Ba isotopic chains, and an interesting phenomenon is that as the
neutron increases, all these isotopic chains exhibit a common characteristic of prolate-shape
dominance [37]. Additionally, DRHBc theory has been used for a systematic study of shell
structures. It not only successfully reproduces experimental data [38] and verifies the magic
numbers but also reproduces the disappearance of traditional magic numbers and the
emergence of new magic numbers [39]. The inner fission barriers of even–even uranium
isotopes are studied studies using DRHBc theory, and a periodic-like behavior is exhibited:
peaks at the shell closures and valleys in the mid-shells [40]. These research achievements
fully demonstrate the wide applicability and accuracy of DRHBc theory in nuclear physics
and astrophysics research.

In this paper, we will focus on the shell structure evolution in the even–even U, Pu,
and Cm isotopic chains by adopting DRHBc theory. It is interesting to note that in a very
recent experimental work [41], the proton drip line of their odd-Z neighboring element Np
has been determined to be 219Np, which marks the heaviest proton drip line ever reached.
The established α-decay systematics suggested the robustness of the N = 126 shell closure
even in the vicinity of the proton drip line [41]. Besides, it is fascinating to explore the
possible shell closures, subshell structures, and their evolution in the neutron-rich region.

2. Theoretical Framework

The details of DRHBc theory can be found in Refs. [26,28,30,42]. Here, we only briefly
introduce its formalism. In DRHBc theory, the relativistic Hartree–Bogoliubov (RHB)
equation that self-consistently describes mean field potentials and pairing correlations
reads (

ĥD − λτ Δ̂
−Δ̂∗ −ĥ∗D + λτ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (1)

where ĥD is the Dirac Hamiltonian, λτ (τ = n, p) is the Fermi energy for neutron or proton,
Δ̂ is the pairing potential, Uk and Vk are the quasiparticle wave functions, and Ek is the
quasiparticle energy. In the coordinate space, the Dirac Hamiltonian is

hD(r) = α · p + V(r) + β[M + S(r)], (2)

where M is the nucleon mass, S(r) and V(r) are the scalar and vector potentials. The
pairing potential is

Δ(r1, r2) = Vpp(r1, r2)κ(r1, r2), (3)

where κ is the pairing tensor and Vpp is the pairing force of a density-dependent zero-
range type,

Vpp(r1, r2) = V0
1
2
(1 − Pσ)δ(r1 − r2)

(
1 − ρ(r1)

ρsat

)
, (4)
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with V0 as the pairing strength, (1 − Pσ)/2 as the projector for the spin S = 0 component
in the pairing channel, and ρsat as the saturation density of nuclear matter.

For an axially deformed nucleus with spatial reflection symmetry, the potentials and
densities can be expanded in terms of Legendre polynomials,

f (r) = ∑
λ

fλ(r)Pλ(cos θ), λ = 0, 2, 4, . . . , λmax (5)

Finally, in DRHBc theory, the RHB equations are solved using the basis expansion
method with the Dirac WS basis [25,43,44], which can properly describe the large spatial
extension of weakly bound nuclei.

3. Results and Discussion

Upon the efforts of the DRHBc mass table collaboration, the mass table for even-Z
nuclei in DRHBc with the PC-PK1 density functional [27] has been constructed [29–31]. The
numerical details adopted here for the U, Pu, and Cm isotopic chains follow the DRHBc
mass table calculations for the nuclear region 72 � Z � 100 [28,30]. That is, the box size
Rbox = 20 fm and the energy cutoff Ecut = 300 MeV for the Dirac WS basis have been
chosen. The pairing strength V0 = −325 MeV · fm3 and the pairing window 100 MeV are
used in DRHBc theory calculations. The Legendre expansion truncation order λmax = 8
and the angular momentum cutoff Jmax = 23/2h̄ are taken.

First of all, for these three isotopic chains, the proton and neutron drip line nuclei
will be determined by the Fermi energies and the two nucleon separation energies. The
Fermi energy represents the change in total energy with the change in the number of
particles [45]. A negative Fermi energy usually corresponds to a positive separation energy
of a bound nucleus, and a positive Fermi energy implies an unbound nucleus in the mean
field level [28]. The nucleon separation energy can provide direct information on whether
the nucleus is able to emit nucleons or not.

Figure 1 shows the calculated neutron Fermi energies λn and proton Fermi energy λp

for the even–even U, Pu, and Cm isotopic chains in DRHBc theory calculations. For the
convention where the pairing energy is zero, the Fermi energy is chosen to be the energy of
the last occupied single-particle state, which is the same strategy adopted in Refs. [28,29].
In Figure 1a, it is seen that the λn almost continuously increases with the neutron number
for a whole isotopic chain and finally becomes positive when going beyond the neutron
drip-line. The neutron drip-line nuclei for these isotopic chains are 350U, 352Pu, and 354Cm,
respectively, all corresponding to the neutron number N = 258. In Figure 1b, it is seen
that the λp starts from a positive value and almost continuously decreases with the proton
number for a whole isotopic chain. The first nucleus with negative λp corresponds to the
proton drip line, which is 212U with N = 120 (λp = −0.16 MeV) for U isotopes, 220Pu with
N = 126 (λp = −0.07 MeV) for Pu isotopes, and 226Cm with N = 130 (λp = −0.36 MeV) for
Cm isotopes. Corresponding, the three nuclei are the proton drip-line nuclei. Note that
these neutron and proton drip-line nuclei determined by the Fermi energies are consistent
with the results by the two-neutron separation energies S2n.

The sudden changes in the Fermi energies may suggest the possible shell closures. In
Figure 1a, the λn increases rapidly at certain neutron numbers, such as the well-known
magic number N = 126 in U and Pu isotopic chains and N = 184 and 258 in U, Pu, and Cm
isotopic chains. The latter indicates new shell closures at N = 184 and 258. In Figure 1b, in
contrast to the Pu and Cm isotopic chains, the proton Fermi energy λp in the U isotopic
chain shows sudden drops when approaching the possible neutron shell closures N = 126,
184 and 258. As interpreted below, these sudden drops can be attributed to the proton
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pairing collapse originating from the spurious shell closure at Z = 92 in the single-proton
energy levels.
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Figure 1. Neutron (a) and proton (b) Fermi energies of even−even U, Pu, and Cm isotopic chains in
DRHBc theory calculations.

Taking the nuclei 276U, 278Pu, 280Cm with N = 184 as an example, Figure 2 shows the
single-proton levels near the Fermi energy as a function of the deformation parameter β2.
In this subfigure (a), there is a significant spherical shell gap of Z = 92 around 3.816 MeV
between the degenerate spherical orbitals 2 f7/2 and 1h9/2, which is even larger than the
traditional spherical shell of Z = 82, as shown below. Due to the existence of this proton
shell Z = 92, the U isotopes with neutron number not far away from shell closures tend to
be spherical, and the corresponding proton pairing energy tends to be zero. This pairing
collapse leads the proton Fermi energies around N = 184 for these Uranium isotopes located
at the designated spherical orbital 1h9/2. For the neighboring uranium isotopes away from
N = 184, the ground states are deformed with Fermi energies above 1h9/2. As a result, in
Figure 1b, focusing the neutron numbers around the possible shell closure N = 184, there is
one sudden drop from 174 to 176, jumping from Fermi energies above 1h9/2 in deformed
nuclei to exactly 1h9/2 when pairing collapse occurs, together with one sudden rise from
196 to 198 when shape transition from spherical to deformed occurs. The shape evolution
will be further discussed with quadrupole deformation later. For Pu and Cm isotopes with
two or four more protons, in Figure 2b,c, the Fermi energies just stay between these two
orbitals 1h9/2 and 2 f7/2, both for spherical ground states close to N = 184 and for deformed
ground states away from 184. Consequently, the Fermi energies around N = 184 for Pu and
Cm isotopes displayed continuous behavior without abrupt changes as shown in Figure 1b.
This spurious shell closure Z = 92, which is commonly found in the CDFT calculations, is
expected to be cured or mitigated by the presence of tensor interaction [46] or localized
Fock term [47].

From the binding energies, the two-neutron separation energies S2n can be calcu-
lated as

S2n(Z, N) = EB(Z, N)− EB(Z, N − 2). (6)

In Figure 3a, the S2n values in the U, Pu, and Cm isotopic chains obtained from the
DRHBc calculations are shown, in comparison with the RCHB results [48] and the available
experimental data [38]. Around the shell closure N = 126, the results of the DRHBc and the
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RCHB are consistent and reproduce its robustness in the vicinity of proton drip line [41].
Away from the shell-closure region, compared to the RCHB results, the DRHBc calculations
reproduce the experimental values better. When the S2n reaches a negative value, the
nucleus is unbound against two-neutron emission. The last nucleus with the positive S2n is
determined as the two-neutron drip line nucleus. In the even–even U, Pu, and Cm isotopic
chains, the last positive values are 1.41 MeV of 350U, 1.73 MeV of 352Pu, and 2.00 MeV of
354Cm; thus, these three nuclei are at the two-neutron drip line N = 258. This is consistent
with the position of the neutron drip line determined by the λn in Figure 1a.
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Figure 2. Single−proton energies in the canonical basis of 276U (a), 278Pu (b) , 280Cm (c) as a function
of the deformation parameter β2 in DRHBc theory calculations. The Fermi energy as a function of
quadrupole deformation is also displayed by a green dash−dot line. The single-particle levels with
positive (negative) parity are displayed as red solid (blue dashed) lines. The proton number obtained
by filling all the lower levels is shown with a circle at several energy gaps.
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Figure 3. Two−neutron separation energies (a) and two−neutron shell gaps (b) of even−even U, Pu
(shifted up 4 MeV), and Cm (shifted up 8 MeV) isotopic chains in DRHBc theory calculations. The
RCHB results [48] and the available experimental data [38] are shown for comparison.
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In Figure 3a, between the traditional shell closure N = 126 and two possible ones
N = 184 and 258, comparing with the RCHB results, the S2n from DRHBc theory exhibits
systematic behavior. When the neutron number increases from the shell closure to the
middle shell, S2n from DRHBc theory is higher than that of RCHB calculation, while from
the mid-shell to the next shell closure, S2n from DRHBc theory is lower than that of RCHB
calculation. It is noteworthy that the RCHB theory is spherical, while DRHBc theory takes
the quadrupole deformation into account. Such behavior should be associated with the
evolution of the ground state deformation.

It is further noted that some bound nuclei beyond the neutron drip line have been
predicted in the DRHBc mass table calculations [30,31], such as in the 50 � Z � 70 [35]
and 106 � Z � 112 [33,49,50] regions, which form the peninsulas of stability in the nuclear
landscape. However, for the current region, after examining the neutron Fermi energies
and the two-neutron separation energies for nuclei beyond the neutron drip line, this
phenomenon of entrant stability is not found.

Besides the information of drip line, the S2n contains detailed information about the
shell closure. For example, as shown in Figure 3a, the S2n in the U, Pu, and Cm isotopic
chains show sudden drops at the traditional magic number N = 126 and possible magic
numbers N = 184 and 258. Away from the shell closures, as the number of neutrons
increases, the S2n drops almost smoothly. However, near N = 134 and N =198, the S2n

calculated using DRHBc theory shows a slight increase with the neutron number, whereas
the S2n obtained from RCHB theory does not exhibit the increasing behavior. Similar
increases of S2n are also observed in the DRHBc results at positions such as near N = 174,
248 in the U isotopic chain; N = 174, 178, 192, 236 in the Pu isotopic chain; and N = 170,
190 in the Cm isotopic chain. It is noteworthy that RCHB theory is spherical, while DRHBc
theory takes the quadrupole deformation into account. Thus the quadrupole deformation
may lead to the occurrence of these phenomena.

In order to more clearly demonstrate the shell closures and the fine structure of S2n in
the U, Pu, and Cm isotopic chains, the two-neutron shell gaps δ2n, which are the difference
of S2n between two neighboring nuclei

δ2n(Z, N) = S2n(Z, N)− S2n(Z, N + 2), (7)

are analyzed. Figure 3b shows the δ2n of the even–even U, Pu, and Cm isotopic chains
calculated by DRHBc theory with the neutron number together with the RCHB results [48]
and the available experimental data [38]. Comparing with the RCHB results, DRHBc
theory better reproduces the available experimental data. At the shell closures or possible
shell closures N = 126, 184 and 258, the δ2n obtained from both the DRHBc and RCHB
calculations always exhibits pronounced peaks in the U, Pu, and Cm isotopic chains. As
shown in Figure 3b, most δ2n values, whether from the RCHB calculations or the DRHBc
calculations, are non-negative, reflecting the globally declining behavior of S2n with the
increase in neutron number. The few negative δ2n values appear only in the DRHBc results,
the positions of which are around N = 134 and 198 for the three isotopic chains and also at
N = 174, 248 for U, N = 174, 178, 192, 236 for Pu, and N = 170, 190 for Cm. In comparison,
the δ2n is always greater than zero for the RCHB results, which does not consider the
quadrupole deformation degree of freedom. Therefore, it is necessary to examine the
quadrupole deformation evolutions in these isotopic chains.

Figure 4 presents the ground state deformation evolutions of the U, Pu, and Cm
isotopic chains obtained from the DRHBc calculations, in comparison with the available
empirical data extracted from the observed B(E2, 0+1 → 2+1 ) [38]. DRHBc theory can
reproduce the available data. As seen in Figure 4, the deformation evolutions of the
even–even U, Pu, and Cm isotopic chains show similar evolutionary patterns: near the
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well-known shell closure at N = 126, the ground state shapes are spherical or nearly
spherical. Before reaching the next shell closure at N = 184, β2 reaches a peak in the
mid-shell. As the neutron number increases to N = 172, 268Cm is the first to transit from
prolate to oblate shape, followed by 268Pu at N = 174 and 268U at N = 176. From N = 184
to possible shell closure at N = 258, they all first experience a transition from spherical
to prolate, with β2 reaching a peak around N = 214. The U, Pu, and Cm isotopic chains
experience transitions from prolate to oblate shape at N = 236, N = 238, and N = 238,
respectively. After that, the ground state shape becomes less oblate with increasing neutron
number, and finally becomes spherical at N = 258.
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Figure 4. Quadrupole deformation of even−even U, Pu, and Cm isotopic chains in DRHBc theory
calculations, and the available experimental data [38] are shown for comparison. The inset gives a
detailed comparison between the calculated results and the available experimental data [38].

One may notice that the increase in S2n in Figure 3a and the negative δ2n in Figure 3b
appear where the quadrupole deformation transition happens in Figure 4. For example,
the negative δ2n occurs at N = 134 for U and Pu isotopes, and N = 132 for Cm isotopes;
correspondingly the shape transition from spherical to prolate occurs synchronically in
Figure 4.

Besides the pronounced peaks of δ2n that show the major shells at N = 126, 184, and
258, in Figure 3b, one can also find some small-scale peaks in the DRHBc results. The
amplitudes of these peaks are about 1 MeV or less, and their positions are not strictly
aligned for different isotopic chains. For uranium, these small peaks appear at N = 144,
150, and 160; for plutonium, at N = 142, 150, and 160; and for curium, at N = 142, 148, and
162. Note that these peaks do not appear in the RCHB results, but instead another small
peak at N = 138 appears.

To understand the origins of these small peaks in Figure 3b, by comparing the U,
Pu, and Cm isotones, Figure 5 shows the canonical single-neutron energies of 234,242,252U,
236,244,254Pu and 238,246,256Cm as a function of the deformation parameter β2 obtained by
DRHBc theory. When the nucleus is spherical at β2 = 0, the neutron single particle levels
with the same quantum numbers nlj are degenerate due to the spherical symmetry, leading
to several energy gaps between two neighboring spherical orbitals. The energy gap between
the spherical orbitals 1i11/2 and 2g9/2 is around 2 MeV. With the 1i11/2 orbital fully occupied
by 12 neutrons lying above the shell closure N = 126, a spherical gap at N = 138 is formed.
This can be used to interpret the small peak of δ2n at N = 138 shown by the spherical RCHB
results in Figure 3.
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Figure 5. Single−neutron energies in the canonical basis for uranium, plutonium and curium isotopes
with N = 142, 150 and 160, namely 234,242,252U (a−c), 236,244,254Pu (d−f), and 238,246,256Cm (g−i), as
functions of the deformation parameter β2 in DRHBc theory. The Fermi energy is also displayed by a
green dash−dot line. The single−particle levels with positive (negative) parity are displayed as red
solid (blue dashed) lines. The neutron numbers obtained by filling all the lower levels are shown
in a circle at several energy gaps. The ground states are indicated by gray lines at corresponding
deformation positions.
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When the spherical symmetry is broken and a nucleus undergoes axial deformation,
the total angular momentum j is no longer a good quantum number while its projection
on the symmetry axis K remains a good quantum number. Normally, one spherical j-shell
splits into (2j + 1)/2 orbitals. As a result, the traditional spherical shell closure breaks
down and new deformed subshells may emerge. As shown in Figure 5, comparing panels
(a), (d), and (g), a shell gap at 142 appears obviously for the N = 142 isotones 236Pu and
238Cm but not so distinctly for N = 142 isotone 234U. Instead, for 234U, a gap slightly larger
appears at N = 144, just above 142. This gap change effectively explains the subtle peak
shift from N = 144 for U to N = 142 for Cm in Figure 3b. Similarly, a gap at 160 emerges for
N = 160 isotones 252U and 254Pu in panel (c) and (f), while a gap at 162 is seen for 256Cm in
panel (i), corresponding to the peak shift from N = 160 for U and Pu to N = 162 for Cm
in Figure 3b. For panels (b) ,(e), and (h), a relatively robust subshell gap at N = 150 can
be found for 242U, 244Pu, and 246Cm, which generally agrees with the peak at N = 150 for
U, Pu in Figure 3b. Based on the analysis, the small peak of two neutron gap δ2n strongly
correlates with the deformed subshell structure near the Fermi surface, and some subshells
may be quenched with different isotopic chains.

Another important indicator of shell closure is the average pairing gap, as discussed
in Ref. [51], which allows us to obtain direct information about the impact of pairing
correlations and shows the arch structures that vanish at shell closures and have additional
deeps at subshell closures. Figure 6a shows the Δn as a function of the number of neutrons
for even–even U, Pu, and Cm isotopic chains calculated by DRHBc theory. As shown in
Figure 6a, most Δn values transition smoothly with the neutron number and are greater
than zero. However, near the magic number N = 126 and the possible magic numbers
N = 184 and 258, Δn values exhibit a sharp decrease and become zero. Additionally, we
observe that a few Δn values also show a decrease at the following positions: for the U
isotopic chain, N = 144, 150, and 160; for the Pu isotopic chain, N = 142, 150, and 160;
and for the Cm isotopic chain, N = 142, 148, and 162. These positions correspond to the
small-scale peaks in Figure 3b.
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Figure 6. Neutron average pairing gap Δn (a) and proton average pairing gap Δp (b) of even−even
U, Pu, and Cm isotopic chains in DRHBc theory calculations.

Figure 6b shows the Δp as a function of the number of protons for even–even U, Pu,
and Cm isotopic chains calculated by DRHBc theory. Similarly, in Figure 6b, most Δp values
exceed zero. It is observed that for the U isotopic chain, Δp values drop to zero near the
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magic number N = 126 and the possible magic numbers N = 184 and 258. In contrast, the
Δp values for Pu and Cm isotopic chains remain positive. This indicates that due to the
existence of the pseudo shell Z = 92, a pairing collapse occurs in the U isotopic chain within
these regions, resulting in a sudden decrease in the λp value in the U isotopic chain shown
in Figure 1.

Very recently, Ref. [52] proposed a new binding-energy indicator, single-particle
neutron energy Δen , to catalog the subshell closures in nuclear landscape. This indicator
behaves in a similar way as δ2n. The subshell closures at N = 152 and 162 are found
for different mass models SkM*, SLy4, UNEDF1, UNEDF2, and FRDM-2012. These two
subshells are very close to our results presented here.

4. Conclusions

In summary, we have performed systematic studies of DRHBc theory with the PC-PK1
density functional for the shell structure evolution of even–even U, Pu, and Cm isotopic
chains from the proton drip line to the neutron drip line. By analyzing the Fermi energies
and the two-neutron separation energies, we predicted the proton drip line for the U, Pu,
and Cm isotopic chains to be at 212U, 220Pu, and 226Cm and the neutron drip line to be
at 350U, 352Pu, and 354Cm, respectively. In comparison with spherical RCHB calculations,
the inclusion of axial deformation degree of freedom does not change these drip line
boundaries. The phenomenon of entrant stability beyond the neutron drip line is not
found for the current region. The shell closures at N = 126, 184, and 258 in U, Pu, and
Cm isotopic chains can be clearly seen by the Fermi energy λn, two-neutron separation
energy S2n, and two-neutron shell gap δ2n. The emergence of sudden drops between U
and Pu isotopic chains in the proton Fermi energies λp around some neutron shell closures
N = 126, 184, and 258 is a consequence of designation convention when the pairing collapse
at the spurious shell closure Z = 92 occurs.

The fine structure in the two-neutron separation energy and the two-neutron shell gap,
like decrease of S2n and negative δ2n, may be related to the ground state shape transition.

Finally, the small-scale peaks in the two-neutron shell gaps δ2n indicate some subshells,
namely, N = 144, 150, and 160 for uranium, N = 142, 150, and 160 for plutonium, and
N = 142, 148, and 162 for curium. These subshells can be well understood by the deformed
gaps in the single-neutron levels obtained by DRHBc theory.
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Abstract: The deformed relativistic Hartree–Bogoliubov theory in continuum (DRHBc) has garnered
significant attention for its ability to describe the properties of nuclei across the entire nuclear
chart, from light to heavy nuclei, including both stable and exotic ones. As part of ongoing efforts
to construct a mass table using the DRHBc theory, determining the ground states of nuclei is a
crucial task in the systematic studies of deformed nuclei. In this work, a strategy for identifying the
ground state in the superheavy nuclei region is proposed and evaluated, by taking Z = 134 and 135
isotopes as examples. First, we examine how the step size of the initial quadrupole deformation
parameter, Δβ2, affects the pattern of the potential energy curves (PECs) and the determination of the
ground state. Our findings indicate that Δβ2 = 0.05 producing smooth and well-defined PECs while
maintaining an acceptable numerical cost. Next, we explore the convergence of PECs with respect
to the angular momentum cutoff, Jmax. Based on the results, we recommend using Jmax = 31/2h̄,
especially for nuclei with competing oblate and prolate minima. Finally, we conclude that the accurate
identification of the ground state can be achieved by performing unconstrained calculations around
the minima of the PECs.

Keywords: superheavy nuclei; deformed relativistic Hartree–Bogoliubov theory in continuum;
potential energy curve; deformation

1. Introduction

The importance of nuclear mass cannot be overstated in the realm of nuclear
physics [1,2]. It serves as a fundamental property that influences various phenomena,
including nuclear stability, decay processes, and the structure of atomic nuclei. Accu-
rate knowledge of nuclear masses is essential for understanding the underlying nucleon–
nucleon interactions and for predicting the behavior of isotopes in astrophysical environ-
ments, such as nucleosynthesis in stars [3,4] and stellar neutrino emission [5].

The nuclear mass of superheavy nuclei [6] with Z ≥ 104 is particularly interesting,
in the sense that the exploration of charge and mass limits of atomic nuclei and the synthesis
of long-lived or stable superheavy nuclei are at the frontier of modern nuclear physics [7–9].
Determining the ground states of superheavy nuclei is exceptionally challenging due to
their short-lived nature and the complexities associated with their production. Nevertheless,
advancements in experimental techniques, such as the use of gas-filled separators [10] and
advanced detection systems [11,12], have enabled significant progress in identifying and
characterizing these elusive nuclei. The insights gained from these studies are crucial for
understanding the limits of nuclear stability and exploring the location of the island of
stability [13,14]. Experimentally, the element Og with proton number Z = 118 is the highest
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Z element observed so far [15]. Although we have witnessed the prosperous development
of new generations of radioactive ion beam facilities, most neutron-rich nuclei far from the
stability valley will remain beyond experimental access in the foreseeable future.

A reliable theoretical nuclear mass table is highly desired to further understand the
nuclear landscape. Lots of efforts towards precise descriptions of nuclear masses have
been made with various macroscopic–microscopic models [16–18], nonrelativistic density
functional theories (DFTs) with Skyrme [19,20] and Gogny [21] interactions, and relativis-
tic DFTs [22–31]. Among them, the deformed relativistic Hartree–Bogoliubov theory in
continuum (DRHBc) [32,33] with the PC-PK1 [34] density functional has shown its remark-
able ability on the satisfactory description of the ground-state properties with powerful
explorations [35], due to the self-consistent consideration of the nuclear superfluidity, de-
formation, and continuum effects. In particular, the DRHBc Mass Table Collaboration [36]
represents a concerted effort not only to calculate masses for stable and unstable nuclei
but also to provide a more complete picture of the nuclear landscape.

Systematic numerical convergence checks from light to heavy nuclei for the DRHBc
calculations have been justified in refs. [33,37]. Following the strategy and techniques presented
in those articles, the nuclear mass table calculated by the DRHBc theory with PC-PK1 has been
constructed for even–even nuclei [28] and even-Z nuclei with 8 ≤ Z ≤ 120 [29]. Recently, this
collaboration has extended its research scope to heavier nuclei.

In this work, we focus on the application of the DRHBc theory in the superheavy region
with Z > 120, especially the determination of the ground state. In the literature, those
nuclei with Z > 126 are also called hyperheavy nuclei [38–40]. This paper is organized as
follows: Section 2 provides a brief overview of the theoretical framework, while Section 3
presents the numerical details. The results and discussions are presented in Section 4, and a
summary is given in Section 5.

2. Theoretical Framework

For the sake of completeness, we lay out some key elements of the DRHBc theory with
point-coupling density functionals. For details on the theoretical framework, we refer the
reader to refs. [32,33,37,41].

The relativistic Hartree–Bogoliubov (RHB) equation describing the motion of nucleons
in nuclei reads (

ĥD − λτ Δ̂
−Δ̂∗ −ĥ∗D + λτ

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
, (1)

where ĥD is the Dirac Hamiltonian, Δ̂ is the pairing field, λτ is the Fermi energy for
neutron or proton (τ = n, p), Uk, Vk are the quasiparticle wave functions, and Ek is the
quasiparticle energy.

In a nuclear system with time-reversal symmetry, the Dirac Hamiltonian in the coordi-
nate space is written as

hD(r) = α · p + V(r) + β[M + S(r)]. (2)

Here, M is the nucleon mass, α and β are Dirac matrices, and S(r) and V(r) are the
scalar and vector potentials. In the point-coupling framework [34], the scalar potential S(r)
and vector potential V(r) are defined as follows

S(r) = αSρS + βSρ2
S + γSρ3

S + δSΔρS, (3a)

V(r) = αVρV + γVρ3
V + δVΔρV + eA0 + αTVτ3ρ3 + δTVτ3Δρ3, (3b)

where A0 is the electric potential, τ3 = ±1 for neutron and proton. The coupling constants
α’s, β’s, γ’s, and δ’s are adjustable parameters in the point-coupling Lagrangian and can
be determined by fitting the binding energies and charge radii of a set of spherical nuclei

50



Particles 2024, 7

as in ref. [34]. The local densities ρS, ρV , and ρ3 are calculated with the quasiparticle
wave functions

ρS(r) = ∑
k>0

V†
k (r)γ

0Vk(r), (4a)

ρV(r) = ∑
k>0

V†
k (r)Vk(r), (4b)

ρ3(r) = ∑
k>0

V†
k (r)τ3Vk(r). (4c)

Note that the no-sea approximation is adopted in Equation (4), i.e., the summations
are performed only over the quasiparticle states in the Fermi sea.

The pairing field in the RHB Equation (1) is expressed as [32,33]

Δ(r1, r2) = Vpp(r1, r2)κ(r1, r2), (5)

where the spin and isospin indexes are not shown for simplicity. The quantity κ is the
pairing tensor and Vpp is the density-dependent zero-range pairing force

Vpp(r1, r2) = V0
1
2
(1 − Pσ)δ(r1 − r2)[1 − ρ(r1)/ρsat]. (6)

In Equation (6), V0 is the pairing strength, ρsat = 0.152 fm−3 is the saturation den-
sity of nuclear matter, (1 − Pσ)/2 is the projector for the spin-zero component in the
pairing channel.

A deformed model is employed here because it enables us to determine the shape of nuclei,
whether they are spherical or axially deformed, based on the total energies. This is definitely
important because most studies on hyperheavy nuclei within DFTs [38,39,42,43] have been
performed only for spherical shapes, while there is no guarantee that spherical minimum
in potential energy surface exists for those nuclei. For an axially deformed nucleus with
spatial reflection symmetry, the potentials in Equation (3) and densities in Equation (4) can
be expanded in terms of the Legendre polynomials

f (r) = ∑
λ

fλ(r)Pλ(cos θ), λ = 0, 2, 4, · · · , λmax (7)

with
fλ(r) =

2λ + 1
4π

∫
dΩ f (r)Pλ(Ω). (8)

In practical calculations, the deformed RHB Equation (1) is solved in a spherical Dirac
Woods–Saxon basis, which is obtained by solving a Dirac equation with spherical scalar
and vector potentials in Woods–Saxon forms [44]. Both the positive- and negative-energy
states for the solution of Dirac equations are considered. In recent years, the completeness
of the full Dirac space is crucial also for ab initio studies of nuclear structure [45] and
nuclear matter [46,47]. The solution of the RHB equations provides us with the expansion
coefficients of quasiparticle wave functions, from which new densities and potentials can
be obtained. These quantities are iterated in the RHB equations until the convergence
is achieved.

3. Numerical Details

The numerical details for constructing the DRHBc mass table have been examined
thoroughly in refs. [33,37]. For nuclei with 8 ≤ Z ≤ 120, according to ref. [37], the box
size and the mesh size are Rbox = 20 fm and Δr = 0.1 fm; the energy cutoff for the levels
in the Fermi sea is E+

cut = 300 MeV; the number of states in the Dirac sea is taken to be
the same as that in the Fermi sea; The angular momentum cutoff is Jmax = 23/2h̄; the
Legendre expansion truncation in Equation (7) is chosen as λmax = 6, 8, 10 for nuclei with
8 ≤ Z ≤ 70, 72 ≤ Z ≤ 100, and 102 ≤ Z ≤ 120, respectively. For the pairing channel,
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the pairing strength V0 = −325.0 MeV · fm3 and the sharp pairing window of 100 MeV
are used. A detailed examination of the numerical details for nuclei with Z ≥ 122 is in
progress. In this work, we will discuss the convergence of potential energy curves (PECs)
with respect to the Jmax in the region of superheavy nuclei. Other numerical details are
aligned with the suggestions in Refs. [33,37], including typically the Legendre expansion
truncation λmax = 10 and the box size Rbox = 20 fm.

The point-coupling density functional PC-PK1 is used in this work. Uncertainty quan-
tification of DRHBc calculations from parameters can be obtained with thorough analysis
of parameter fitting [48,49] and/or using machine learning techniques [50,51], which are
beyond this scope and can be considered in future work. Regarding the extrapolation
reliability of the theoretical framework and density functional adopted in this work, ref. [35]
has shown that the DRHBc theory with PC-PK1 has an impressive performance.

In addition, for the following discussions, we temporarily adopt a systematic IUPAC
name for nuclei with Z > 100 [52]. Specifically, nuclei with Z = 134 and Z = 135 are
named by Utq and Utp, respectively.

4. Results and Discussion

Firstly, we investigate how the pattern of PECs changes as the step size of the initial
quadrupole deformation parameter Δβ2 is varied. Here, β2 has a standard meaning of
deformations of the ellipsoid-like density distributions. One can easily expect that for too
small Δβ2 the calculation costs cannot be ignored, while for too large Δβ2 the PECs are
not smooth though to locate the local minimum. In Figure 1, we show the PECs of
384
134Utq250 with three different initial deformation step sizes, i.e., Δβ2 = 0.1, 0.05, and 0.01.
For clarity, the values for Δβ2 = 0.1 and 0.05 have been shifted by adding up 20 and 10 MeV.
Obviously, constrained calculations with Δβ2 = 0.01 lead to an overly dense PEC, which
is not necessary since there are 200 times calculations in the range of −1.0 ≤ β2 ≤ 1.0.
On the other hand, Δβ2 = 0.1 provides a loose PEC which is dangerous for possible missing
of local minimum. Choosing Δβ2 = 0.05 is a very appropriate compromise considering
both the computational cost and smoothness, as can be seen in Figure 1. We also show
the unconstrained results, which is consistent with the constrained calculations. In the
discussions below, if there is no explicit statement, the PECs are obtained with an initial
deformation step size Δβ2 = 0.05.

In Figure 1, one finds that the ground state results from the competition between
two local minima. One has an oblate deformation with β2 
 −0.2, the other one has
a prolate deformation with β2 
 0.42, which is much larger than the deformation for
most nuclei [53]. According to the conventional deformed shell model, a larger prolate
deformation causes a greater downward shift in single-particle levels with high angular
momentum. Besides, the PECs in Figure 1 do not show fission possibilities even for
β2 = 1.0, which is unusual for such a superheavy nucleus. These two facts imply that the
present cutoff of the angular momentum Jmax = 23/2h̄ might not be enough to contain
high-order orbits for the superheavy nuclei.

Figure 2 shows how the PECs evolve with the increasing Jmax. The nucleus 388
134Utq254

is chosen as an example because, for the normal cutoff Jmax = 23/2h̄, the ground state is
located at β2 = 0.44, which has a large prolate deformation that needs to be checked. As ex-
pected, with the increase in Jmax, the total energies with extreme deformations decrease
and a fission pattern is found. For deformation β2 in the range of [−0.3, 0.3], as highlighted
with two pink vertical dashed lines, Jmax = 23/2h̄ has already provided a large enough
cutoff. In contrast, for a larger deformation with |β2| > 0.3, Jmax = 31/2h̄ is a better cutoff
not only to obtain converged results but also to find the correct ground state. Notice that in
these calculations, the pairing effects are neglected for simplicity as conducted in ref. [33].
Furthermore, increasing the Legendre expansion truncation λmax from 10 to 12 does not
alter the conclusion here.

The observations from the previous two figures inspire us the following three steps in
the determination of the ground state:
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• Choose the initial deformation step size Δβ2 = 0.05 with Jmax = 23/2h̄ to obtain a
smooth enough PEC with acceptable computational costs.

• Check the total energies for large deformation with |β2| > 0.3 by calculations with
Jmax = 31/2h̄.

• Perform unconstrained calculations in the vicinity of local minima in PEC. The config-
uration with the lowest total energy is the ground state.

Following the above strategy, we study the total energies of 388
134Utq254 as a function of

deformation and present the results in Figure 3. In this case, we consider the pairing through
the Bogoliubov theory, where the pairing strengths are fixed at V0 = −325.0 MeV · fm3 for
Jmax = 23/2h̄ [33] and V0 = −300.0 MeV · fm3 for Jmax = 31/2h̄. Both combinations can
reproduce the experimental odd–even mass differences in Ca and Pb isotope chains as in
ref. [33]. It should be mentioned that a weaker pairing strength is required for a higher
angular momentum cutoff because the zero-range pairing force adopted in Equation (6)
needs to be renormalized to the enlarged model space.

Figure 1. Potential energy curves of 384
134Utq250 in constrained DRHBc calculations with initial de-

formation step size Δβ2 = 0.1 (upper), 0.05 (middle), and 0.01 (lower). The unconstrained results
are also shown with pink empty triangles. The energy for the ground state has been shifted to
zero, while the values for Δβ2 = 0.1 and 0.05 have been additionally shifted by adding up 20 and
10 MeV, respectively.

From the PEC shown in Figure 3, the modification on total energy from Jmax = 23/2h̄
to Jmax = 31/2h̄ becomes more evident for larger deformation. Moreover, it is evident
that there is competition between the two minima. This indicates that Δβ2 = 0.05 in-
deed provides a PEC with smoothness and clarity. Since the right minimum is around
β = 0.42, it is necessary to perform examinations with a larger cutoff of angular momentum.
By increasing Jmax to 31/2h̄, the total energies around the prolate minimum decrease by
2–3 MeV, prohibiting a more advantageous stability in comparison with its competitor with
oblate deformation. For the oblate side, we also perform calculations with Jmax = 31/2h̄,
while no new minimum is found in addition to the one with β = −0.2. After the uncon-
strained calculations, we come to the conclusion that the ground-state energy of 388

134Utq254
is −2516.952 MeV with deformation β2 = 0.461.
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Figure 2. Potential energy curves of 388
134Utq254 with the angular momentum cutoff Jmax ranging from

23/2h̄ to 33/2h̄. The pairing correlation is neglected. Two pink vertical dashed lines at |β2| = 0.3 are
used to guide the eye.

Figure 3. Potential energy curves of 388
134Utq254 in constrained DRHBc calculations with the angular

momentum cutoff Jmax = 23/2h̄ and initial deformation step size Δβ2 = 0.05. The results for
constrained calculations with higher Jmax = 31/2h̄ for |β2| ≥ 0.3 and unconstrained calculations are
also shown.

The strategy for determining the ground state is applied to three additional nuclei
in the Utq (Z = 134) isotope chain with N = 218, 288, and 320. These three nuclei are
chosen as representatives considering that the proton and neutron drip lines in this isotope
chain are at N = 202 and N = 350, respectively. As depicted in Figure 4, Δβ2 = 0.05 is a
good choice to obtain smooth and clear PECs, for both Jmax = 23/2h̄ and Jmax = 31/2h̄.
For N = 218, the candidate for ground state at the oblate side has a deformation of
β2 = −0.5, while the candidate at the other side is less deformed. By increasing the cutoff of
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angular momentum, the ground state is confirmed with an oblate deformation with a lower
total energy. For N = 288, the situation is reversed and it is the prolate candidate that has
large deformation and needs to be checked. Interestingly, calculations with Jmax = 31/2h̄
find a more stable minimum with larger oblate deformation β2 = −0.563, which does not
show up with Jmax = 23/2h̄. This indicates that the examination with a larger cutoff is of
high necessity even for cases where the oblate and/or prolate deformation of ground-state
candidates is not larger than 0.3. For N = 320 shown in the lower panel in Figure 4, the PEC
is rather simple with Jmax = 23/2h̄, showing a softness around the spherical configuration.
However, with Jmax = 31/2h̄, an oblate minimum shows up, which is found to be the
ground state.

Figure 4. Potential energy curves of Utq nucleus (Z = 134) with N = 218 (upper), 288 (middle),
and 320 (lower) in constrained DRHBc calculations with initial deformation step size Δβ2 = 0.1.
Results with Jmax = 23/2h̄, |β2| ≤ 0.8 as well as the ones with Jmax = 31/2h̄, |β2| ≥ 0.3 for N = 218,
288, and 320 are shown. The unconstrained results are also shown with pink empty triangles and
red stars.

All the aforementioned discussions are for even–even nuclei. The three steps are
further applied to odd-A nuclei, where the time-reversal invariance is retained by blocking
the quasiparticle configurations within the equal-filling approximation [37]. In Figure 5,
the PECs of three nuclei in the Utp (Z = 135) isotope chain with N = 218, 288 and 320 are
given. Despite the difficulties in a quite demanding computational procedure, a smooth
and clear PEC can be obtained with initial deformation step size Δβ2 = 0.05. Besides,
by increasing Jmax from 23/2h̄ to 31/2h̄, one can identify the correct ground state, no matter
if it is oblate or prolate with a deformation parameter |β| smaller or larger than 0.3.

In Table 1, we tabulate the ground-state properties of several nuclei shown from
Figures 3–5, including the binding energy Ecal

b ≡ −Etot from the DRHBc calculations,
the binding energy plus rotational correction energy Ecal

b+rot, the binding energy per nucleon
Ecal

b+rot/A, and the quadrupole deformation β2.
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Figure 5. Similar to Figure 4, but for Utp nucleus (Z = 135).

Table 1. Ground-state properties of several nuclei from Figures 3–5 calculated by the DRHBc theory.

A N Ecal
b (MeV) Ecal

b+rot (MeV) Ecal
b+rot/A (MeV) β2

Z = 134 (Utq)

352 218 2360.01 2363.23 6.714 −0.511
388 254 2516.95 2518.84 6.492 0.461
422 288 2600.77 2603.71 6.170 −0.563
454 320 2639.96 2642.49 5.821 −0.518

Z = 135 (Utp)

353 218 2361.76 2364.88 6.700 −0.515
423 288 2609.93 2612.71 6.177 −0.554
455 320 2651.20 2653.72 5.832 −0.529

5. Summary

Determining the ground states of superheavy nuclei is particularly challenging but
important for both experimental and theoretical studies. Starting from the PC-PK1 point-
coupling density functional, we studied the properties of superheavy nuclei with Z = 134
and 135 within the deformed relativistic Hartree–Bogoliubov theory in continuum (DRHBc).
By investigating how the pattern of potential energy curves (PECs) varies with the changes
in the step size for the initial quadrupole deformation parameter Δβ2 and its conver-
gence with respect to the cutoff of angular momentum Jmax, we propose three steps for
determining the ground state, in balancing the computational complexity and accuracy:

• Choose the initial deformation step size Δβ2 = 0.05 with Jmax = 23/2h̄ to obtain a
smooth enough PEC with acceptable computational costs.

• Check the total energies for large deformation with |β2| > 0.3 by calculations with
Jmax = 31/2h̄.
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• Perform unconstrained calculations in the vicinity of local minima in PEC. The config-
uration with the lowest total energy is the ground state.

These three steps are then applied to three representative nuclei in the Z = 134 isotope
chain with N = 218, 288, and 320. The ground states for the first two nuclei arise from
the competition between oblate and prolate configurations which are already observed
with Jmax = 23/2h̄, while the ground state for N = 320 is obtained only after performing
calculations with Jmax = 31/2h̄. The validation of the strategy is also confirmed for odd-A
nuclei with Z = 135 and N = 218, 288 and 320. This work provides guidance for large-scale
calculations of superheavy nuclei as a new extension of the DRHBc mass table.
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Abstract: Whether Z = 126 is a proton magic number has been controversial in nuclear
physics. The even-even 126Ubh isotopes are calculated based on the DRHBc calculations
with PC-PK1. The evolutions of quadrupole deformation and pairing energies for neutron
and proton are analyzed to study the possible nuclear magicity. Spherical shape occurs
and neutron pairing energy vanishes at N = 258 and 350, which are the results of possible
neutron magicity, while the proton pairing energy never vanishes in Ubh isotopes, which
does not support the proton magicity at Z = 126. In the single-proton spectrum, there is no
discernible gap at Z = 126, while significant gaps appear at Z = 120 and 138. Therefore,
Z = 126 is not supported as a proton magic number, while Z = 120 and 138 are suggested
as candidates of proton magic numbers.

Keywords: superheavy nuclei; magic number; deformation; shell structure

1. Introduction

The exploration of the limit of nuclear existence has been a very fascinating topic
in nuclear physics [1–4]. With neutron number N and proton number Z as horizontal
and vertical axes, respectively, the southwest coast of the nuclear landscape corresponds
the beginning of periodic table, H, the lightest element. The northwest and southeast
coasts are the proton and neutron drip lines, respectively. The proton drip line has been
experimentally determined up to Np with Z = 93 [5], while the neutron drip line has
only been determined up to Ne with Z = 10 [6]. Near the drip lines, many interesting
phenomena are discovered, including the nuclear halo [7], changes of nuclear magic
numbers [8] and pygmy resonances [9], and have attracted worldwide attentions. The
northeast coast of the nuclear landscape corresponds to the upper limit of mass number A,
and is still unknown because data are extremely limited. The heaviest nuclides discovered
so far are 294Og and 294Ts [10], with nucleon numbers (Z, N) = (118, 176) and (117, 177),
respectively. These two nuclides have not reached the so-called “island of stability”, which
is theoretically predicted based on the possible neutron magic number N = 184 and proton
magic number Z = 114 [11–14].

The concept of nuclear magic numbers refers to the particular stability of nuclei with
certain nucleon numbers. Such stability is reflected on the extra nuclear binding energy,
and a more intuitive manifestation is a significantly larger separation energy than that
of the next nuclide. The nuclear magicity is closely related to the nuclear shell effect,
which is a hallmark characteristic in the atomic nucleus as a quantum system. The experi-
mentally confirmed magic numbers are the neutron numbers N = 2, 8, 20, 28, 50, 82, 126
and proton numbers Z = 2, 8, 20, 28, 50, 82 [15]. These magic numbers can be perfectly
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reproduced by assuming a harmonic oscillator potential plus spin-orbital coupling [16,17].
In a naïve consideration with this model, extra stability is suggested at nucleon numbers
2, 8, 20, 28, 50, 82, 126, 184, 258, 350, ..., which not only explains all the magic numbers above,
but also provides a reference for new possible magic numbers such as 184 and 258, as
well as Z = 126. The traditional concept of magic number has been implicitly associated
with spherical symmetry. Recent development has extended this concept to exotic shape
symmetries and fourfold octupole magic number N = 136 and 196 have been predicted with
symmetry-induced increase in stability [18,19]. The nuclei with exotic shape are predicted
to form islands in the superheavy region [20].

The possibility of a proton magic number at Z = 126 has been discussed since as early
as 1955 [21]. Following the establishment of the nuclear shell model, the potential existence
of stable nuclides near Z = 126 was studied and there were also controversies in the con-
clusions [22–25]. In addition to Z = 126, subsequent efforts have also been made to study
other possible magic numbers in the superheavy nuclear region. Based on phenomenologi-
cal models such as finite-range droplet model (FRDM), Z = 114 and N = 184 are predicted
to have large shell gaps, corresponding to new magic numbers [26]. In the FRDM, other
large shell gaps are predicted to be located at N = 162 and Z = 104, 106, 108, 110, instead
of Z = 126. In order to predict experimentally unknown areas, the prediction stability is a
crucial issue to address. The predictive stability of micro-macro models has been investi-
gated thoroughly in many literatures, such as Refs. [27,28] which use the inverse problem
theory of applied mathematics and Monte Carlo simulations. For microscopic models, the
theoretical uncertainties have also been investigated in a systematic manner [29,30].

The relativistic density functional theory has been proven to be a powerful tool
in nuclear physics, due to its successful descriptions on many nuclear phenomena [4].
For the exotic nuclei far away from stability line, the occupation of single-nucleon spectrum
is very close to the continuum threshold, and the pairing interaction can scatter nucleons
from bound states to resonant states in the continuum, leading to a more diffuse den-
sity and the dripline locations might be influenced, called the continuum effects [31–34].
A proper treatment for continuum is solving the nucleon system described by Bogoliubov
transformation in coordinate space, where wave functions are approximated on a spatial
lattice, and the continuum is discretized by suitably large box boundary conditions [35–38].
Based on the relativistic density functional theory and solving the problem in coordinate
space, the spherical relativistic continuum Hartree-Bogoliubov (RCHB) theory was de-
veloped [38,39], which can properly take into account the effects of pairing correlations
and continuum for the nuclei near the limit of nuclear landscape. The RCHB theory
has been applied to many studies for both stable and exotic nuclei, including describing
the halo in 11Li [39], predicting giant halos [40], interpreting the pseudospin symmetry
in exotic nuclei [41], reproducing the interaction cross section and charge-changing cross
sections in light nuclei [42,43], etc. Based on the RCHB theory, the shell structures for
superheavy nuclei were studied, and Z = 120, 132, 138, and N = 172, 184, 198, 228, 238, 258
were suggested to be the magic numbers [44]. In Ref. [45], the first nuclear mass table for
the nuclei with 8 � Z � 120 that incorporates continuum effects was constructed based on
the RCHB theory, where the evolution of shell structures and magic numbers were studied.

Considering that most nuclei deviate from the spherical shape, the deformed relativis-
tic Hartree-Bogoliubov theory in continuum (DRHBc) was developed [46,47]. The DRHBc
theory takes into account the effects of deformation, pairing correlation and continuum,
and can provide proper descriptions for both the stable nuclei and the unstable exotic
nuclei near the boundary of nuclear landscape. As the advantages of the RCHB theory are
inherited and the deformation degrees of freedom are further included, the DRHBc theory
has been applied in many studies on exotic nuclei, including the halo structures [48–56],
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dripline locations [57–59], evolution of deformation and shape coexistence [60–63], etc.
Recently, a nuclear mass table for the nuclei with 8 � Z � 120 is in progress [64,65], and
the even-Z part has been established [66,67]. The mass description for superheavy nuclei
reach accuracy of several hundred keV [57] in reproducing available experimental data as
well as empirical data in AME2020 [68]. Based on the DRHBc theory, Z = 120 is suggested
as a candidate of proton magic number [66], while Z = 126 has not been considered yet.

In this work, the DRHBc theory is employed to examine the possible proton magic
number Z = 126. The Z = 126 element has a temporary systematic IUPAC name as
Unbiohexium (Ubh) [69]. The theoretical framework is briefly introduced in Section 2.
The numerical details are given in Section 3. The results and discussions are presented in
Section 4. Finally, a summary is given in Section 5.

2. Theoretical Framework

The starting point of the relativistic density functional theory is an effective Lagrangian
density with either the meson-exchange or point-coupling interactions [4]. For the point-
coupling interaction, the Lagrangian density reads

L =ψ̄(iγμ∂μ − M)ψ

− 1
2

αS(ψ̄ψ)(ψ̄ψ)− 1
2

αV(ψ̄γμψ)(ψ̄γμψ)− 1
2

αTV(ψ̄�τγμψ)(ψ̄�τγμψ)

− 1
2

αTS(ψ̄�τψ)(ψ̄�τψ)− 1
3

βS(ψ̄ψ)3 − 1
4

γS(ψ̄ψ)4 − 1
4

γV [(ψ̄γμψ)(ψ̄γμψ)]2

− 1
2

δS∂ν(ψ̄ψ)∂ν(ψ̄ψ)− 1
2

δV∂ν(ψ̄γμψ)∂ν(ψ̄γμψ)− 1
2

δTV∂ν(ψ̄�τγμψ)∂ν(ψ̄�τγμψ)

− 1
2

δTS∂ν(ψ̄�τψ)∂ν(ψ̄�τψ)− 1
4

FμνFμν − eψ̄γμ 1 − τ3

2
Aμψ,

(1)

where M is the nucleon mass, e is the charge unit, and ψ is the field operator for nucleon.
The constants α, β, γ, δ terms correspond to four-fermion, third-order, fourth-order, and
derivative couplings terms, respectively [70,71]. The subscripts S, V, and T mean scalar,
vector, and isovector, respectively. The last two terms describe the electromagnetic in-
teraction in the standard quantum electrodynamics Lagrangian, and Aμ and Fμν are the
four-vector potential and field strength tensor of the electromagnetic field, respectively.

Starting from Equation (1) and performing Legendre transformation, the Hamiltonian
is obtained, which, by using the mean-field approximation, is then utilized to derive
the energy density functional. By simultaneously treating the mean fields and pairing
correlations in a self-consistent manner, the nucleons are described by the the relativistic
Hartree-Bogoliubov (RHB) equation [72],

(
ĥD − λτ Δ̂
−Δ̂∗ −ĥ∗D + λτ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (2)

where λτ is the Fermi energy of neutron or proton (τ = n, p), Ek is the quasiparticle energy,
Uk and Vk are the quasiparticle wave functions, ĥD is the Dirac Hamiltonian, and Δ̂ is the
pairing potential.

In the coordinate space, the Dirac Hamiltonian can be written as

hD(r) = α · p + V(r) + β[M + S(r)], (3)

where S(r) and V(r) are scalar and vector potentials, respectively,

S(r) = αSρS + βSρ2
S + γSρ3

S + δS�ρS, (4)

V(r) = αVρV + γVρ3
V + δV�ρV + eA0 + αTVτ3ρ3 + δTVτ3�ρ3. (5)
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ρS, ρV , and ρ3 are the local densities, and are defined as

ρS(r) = ∑
k>0

V†
k (r)γ0Vk(r), (6)

ρV(r) = ∑
k>0

V†
k (r)Vk(r), (7)

ρ3(r) = ∑
k>0

V†
k (r)τ3Vk(r). (8)

k > 0 means that the summation runs over the quasiparticle states in the Fermi sea, which
corresponds to the so-called no-sea approximation.

The pairing potential Δ̂ reads

Δ(r1, r2) = Vpp(r1, r2)κ(r1, r2), (9)

where Vpp is the pairing force, and κ is the pairing tensor. In this work, the density-
dependent zero-range pairing force

Vpp(11, r2) = V0
1
2
(1 − Pσ)δ(r1 − r2)

(
1 − ρ(r1)

ρsat

)
(10)

is adopted. The pairing tensor is defined by using quasiparticle wavefunctions as [73]

κ = U ∗ VT . (11)

In the DRHBc theory, since axial deformation and spatial reflection symmetry are
assumed, the potentials and densities are expanded in terms of the Legendre polynomials,

f (r) = ∑
λ

fλ(r)Pλ(cos θ), λ = 0, 2, 4, . . . , λmax. (12)

It is worth mentioning that this work focuses on axial and spatial reflection symmetries,
while higher-order deformation, spatial-reflection asymmetry as well as triaxial shapes,
which might also play important roles in heavy nuclei [19,20,28,30], are not included here.
The conclusion is limited due to such an assumption on symmetry, and future works are
expected by taking into account the full degrees of freedom that nuclei can take.

In order to correctly take into account the continuum effect, the deformed RHB
Equation (2) are solved in a spherical Dirac Woods-Saxon basis [74], which can properly
describe the asymptotic behavior of the density distribution at a large r.

After self-consistently solving the RHB equations, the expectation values can be
calculated. The total energy is calculated as [47,64]

Etot = ∑
k>0

(λτ − Ek)v2
k − Epair

−
∫

d3r
(

1
2

αSρ2
S +

1
2

αVρ2
V +

1
2

αTVρ2
3 +

2
3

βSρ3
S +

3
4

γSρ4
S +

3
4

γVρ4
V

+
1
2

δSρS�ρS +
1
2

δVρV�ρV +
1
2

δTVρ3�ρ3 +
1
2

ρpeA0
)
+ Ec.m.,

(13)

where
v2

k =
∫

d3rV†
k (r)Vk(r), (14)

and Epair and Ec.m. are the pairing energy and center-of-mass correction energy [47], re-
spectively. It should be mentioned that the pairing energy Epair is a measure for the size of
pairing correlations in theoretical calculations, and under the zero-range pairing force it is
calculated as
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Epair = −1
2

∫
d3rκ(r)Δ(r). (15)

The quadrupole deformation is calculated using

β2 =

√
5πQ2

3N 〈r2〉 =
2
√

5π
∫

d3rρv(r)r2P2(cos θ)

3[
∫

d3rρv(r)][
∫

d3rρv(r)r2]
, (16)

where N is the corresponding particle number, 〈r2〉 is the root-mean-square (rms) radius,
Q2 is the intrinsic quadrupole moment, and ρv is the vector density distribution.

3. Numerical Details

In this work, the relativistic density functional PC-PK1 [71] is adopted, which leads to
the root-mean-square deviation of 1.14 MeV in reproducing available mass data [75,76],
among one of highest-accuracy density-functional descriptions for mass. The accuracy
for mass descriptions by PC-PK1 for medium-heavy to superheavy regions reach sev-
eral hundred keV, as illustrated in Refs. [57,77]. In the coordinate space, the box size
Rbox = 20 fm and the mesh size Δr = 0.1 fm. The cutoff parameters for the Dirac Woods-
Saxon basis include the angular momentum cutoff Jmax = 23/2 h̄ and the energy cutoff
for positive-energy states E+

cut = 300 MeV, and the number of negative-energy states is
taken the same as that of positive-energy states [74]. For the Legendre expansion in Equa-
tion (12), a cutoff λmax = 10 is taken. In the pairing channel, the pairing strength for
Equation (10), V0 = −325 MeV fm3, and a pairing window of 100 MeV are taken. These
pairing parameters are determined by reproducing the odd-even mass differences for Ca
and Pb isotopes [64]. The examinations for the above numerical cutoffs and the pairing
parameters can be found in Refs. [64,66].

4. Results and Discussions

The even-even nuclei in the 126Ubh isotopic chain are calculated with the DRHBc
theory. Bulk properties for the ground states, such as binding energy, separation energies,
quadrupole deformation, root-mean-square radii and pairing energies, as well as the
corresponding density distributions and single-particle levels, are obtained. In order to
discuss the possible magicity, in the following we will focus on the evolution of two-
proton separation energy and two-proton gap, deformation and pairing energies, as well
as single-particle levels.

The separation energy belongs to the first rang observables for magic numbers, and
corresponds to the characteristic jumps in separation energies [78]. As has been shown in
Figures 2 and 3 of Ref. [66], in the DRHBc calculations for 8 � Z � 120, abrupt changes
of separation energies are exhibited at magic numbers. In order to explore the possible
magicity for superheavy nuclei, Figure 1a shows the two-proton separation energy S2p

in the DRHBc calculations by taking the even-even N = 258 isotopes with Z > 100 as
examples. It is shown that S2p decreases monotonously with the proton number, with
the slopes larger near Z = 120 and smaller near Z = 130. For a more intuitive view,
Figure 1b shows the corresponding decrease of S2p at each Z, i.e., the two-proton gap,
δ2p(Z, N) = S2p(Z, N)− S2p(Z + 2, N). The drastic changes of the two-nucleon separation
energies are implicated by the peaks of the two-nucleon gaps, as has been shown in
Figures 4 and 5 of Ref. [66]. Here a peak at Z = 120 is noted, which is consistent with
several other density functional predictions that Z = 120 is a proton magic number. On
the contrary, the δ2p of Z = 126 corresponds to a decrease, instead of a peak, which has
also been depicted in the slope of S2p. Therefore, from the two-proton separation energy,
Z = 126 does not possess extra stability, and no characteristic of magicity is shown.
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Figure 1. (a) Two-proton separation energy S2p and (b) two-proton gap δ2p as functions of the proton
number in the DRHBc calculations with PC-PK1 for even-even N = 258 isotopes with Z > 100.

When the nucleon number equals to a traditional magic number, one result of RHB
calculation is that at the lowest minimum of the potential energy curve, i.e., the ground
state, usually has a spherical shape [66]. In order to further discuss the possibility of the
proton magicity at Z = 126, Figure 2 shows the quadrupole deformation β2 as a function of
the neutron number in the DRHBc calculations for even-even 126Ubh isotopes. From the
proton drip line and by increasing the neutron number, the deformation β2 first generally
decreases from a large positive value to zero near N = 258. After that, β2 increases to
a large value again and decreases to zero near N = 350. The β2 at 324 � N � 334 are
missing because the corresponding isotopes are predicted to be unbound. According to
the evolution of two-neutron separation energy and neutron Fermi energy, the isotopes
at 336 � N � 350 are bound again, which shows a similar behavior with the “re-entrant
binding” in Refs. [2,57,58,79], and forms a “peninsula” beyond the primary two-neutron
drip line at N = 322.

Figure 2. Quadrupole deformation β2 as a function of the neutron number in the DRHBc calculations
with PC-PK1 for even-even 126Ubh isotopes.

From the evolution of deformation, the information on nuclear structure can be
extracted. Before focusing on the possible proton magicity, we first discuss the neutron
structure, which is more obvious in the evolution with the increase of neutron number
and can serve as a comparison for our discussion on the proton structure in the next
paragraph. It is noted that except for a few spherical ones near N = 258 and 350, all
remaining Ubh isotopes are deformed. The spherical Ubh isotopes near N = 258 and
350 correspond to new possible superheavy magic numbers. Sudden changes of β2 occur
near N = 208, 240, 258, 268, 292 and 338, which are also related to the evolution of shell
structure and may lead to shape coexistence [60,61]. Taking N = 266 to 268 as an example,
in Figure 2 a sudden change of deformation occurs between them. Figure 3 shows their
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potential energy curves from deformation-constrained DRHBc calculations by the solid
curves, and the black squares represent the corresponding deformation minima from
unconstrained DRHBc calculations. Both of them have two major minima at β2 ≈ −0.2
and 0.4, and a minor minimum occurs at β2 ≈ 0.06. These two major minima correspond
to similar energies, supporting the possible shape coexistence. At N = 266 the oblate
minimum is lower, and at N = 268 prolate minimum is lower, leading to the sudden
change of β2 at N = 268. In addition, considering that most Ubh isotopes are prolate
rather than oblate, the prolate-shape dominance still works in the superheavy region [63].
Therefore, the evolution of neutron structure for Ubh isotopes is reflected on the quadrupole
deformation, and the sphericity near N = 258 and 350 are significant signals corresponding
to possible neutron magicity [80]. It should be also mentioned that Figure 2 focuses on
the axial quadrupole deformation. When one wishes to study general stability properties
in nuclear physics, especially of heavy nuclei, more quantities and effects, such as the
deformation parameters with orders higher than quadrupole one, as well as the degrees of
freedom from spatial-reflection asymmetry and triaxial shapes, also play important roles
and should be taken into account [19,20,28,30].

Figure 3. Potential energy curves at N = 266 and 268 in 126Ubh isotopic chain from the constrained
DRHBc calculations. The black squares represent the corresponding deformation minima from
unconstrained DRHBc calculations.

Then we come to the proton structure. As has been discussed above, a nav̈e analysis
suggests Z = 126 to be a possible traditional proton magic number. The deformation
shown in Figure 2 is significantly different with the behavior in the proton-magic isotopes
with Z � 120. As shown in Ref. [66], in the isotopic chains with proton magic numbers
Z = 8, 20, 28, 50, almost all nuclei are spherical, and in the isotopic chain with Z = 82,
about half of the isotopes are spherical. In comparison, for Z = 126 here, only five isotopes
near predicted neutron magic numbers N = 258 and 350 are spherical. In conclusion,
not only the evolutions of S2p and δ2p depicted in Figure 1, but also the behavior of β2

in Figure 2, do not support the proton magic number Z = 126. It should also be noted
that the conclusion drawn here is limited by the choice of one single axial deformation
parameter β2. Higher orders such as β4 and β6, as well as the reflection asymmetry degrees
of freedom such like β3 and β5 which has not been incorporated in the DRHBc theory yet,
also impact the calculations [81,82], and are expected to be studied in future works.

For magic nuclei, a notable result from RHB calculations is that a large gap exists in
the single-particle spectrum, which further implies that the occupied nucleons cannot be
scattered into higher orbits, resulting in the vanishing of pairing energy. Conversely, the
sudden disappearance of pairing energy may serve as a theoretical signal to aid in the search
for possible magic numbers. Figure 4 shows the neutron and proton pairing energies as
functions of the neutron number in the DRHBc calculations for even-even 126Ubh isotopes.
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The evolution of neutron pairing energy is smooth at 268 � N � 320, except a few turning
points, while at other neutron numbers, a significant staggering pattern occurs between
zero and nonzero values, such as the results near N = 240 and 340. Since we only consider
even-even Ubh nuclei in this work, the staggerings in neutron pairing energy are irrelevant
to odd-even effect. The zero values at N = 258 and 350 correspond to the predicted
neutron magic numbers, while those at N = 232, 240, 248, 320, 336, 344 reflect the evolution
of neutron shell structure in deformed nuclei.

Figure 4. Neutron and proton pairing energies as functions of the neutron number in the DRHBc
calculations with PC-PK1 for even-even 126Ubh isotopes.

The evolution of proton pairing energy is generally smooth for most Ubh isotopes,
except for a few turning points. Its behavior shows no notable staggering, and never
vanishes, which is remarkably different from the neutron one. For the spherical nuclei near
N = 258 and 350, the corresponding proton pairing energies are significantly larger than
their neighbors. Therefore, the analysis on pairing energies does not support the proton
magic number Z = 126.

In order to further discuss the possibility of proton magicity at Z = 126, taking the
spherical isotope 384

126Ubh as an example, Figure 5 shows the single-proton levels around
the Fermi energy λp in the canonical basis. If we neglect the pairing correlation and let
the proton occupies the orbits one by one, Z = 126 would fully occupy the i11/2 orbit at
εp = −7.847. This orbit is very close to the p1/2 above and the p3/2 below, resulting in no
discernible gap formed in the single-proton spectrum. Although the neutron magic number
N = 126 has been confirmed and successfully reproduced by the DRHBc calculations [58],
Z = 126 is not supported to be a magic number here.

It should also be noticed that two significant gaps appear at Z = 120 and 138, consis-
tent with the prediction of proton magic number Z = 120 from the evolution of S2p and δ2p

in Figure 1. As has been discussed above, the DRHBc calculations have self-consistently
reproduced all traditional magic numbers, and the prediction on Z = 120 and 138 is
also consistent with existing literature, such as Refs. [44,83]. We also expect further
DRHBc studies on other superheavy isotopic chains to confirm the prediction of these new
magic numbers.
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Figure 5. Single-proton levels around the Fermi energy λp in the canonical basis for 384
126Ubh versus

the occupation probability v2 in the DRHBc calculations with PC-PK1. Each level is labeled by the
quantum numbers for spherical orbits. The Fermi energy λp is shown as a green dotted line.

5. Summary

The even-even 126Ubh isotopes are calculated based on the DRHBc calculations with
PC-PK1. The evolutions of quadrupole deformation and pairing energies for neutron and
proton are analyzed to study the possible nuclear magicity. Spherical shape occurs and
neutron pairing energy vanishes at N = 258 and 350, supporting that they are neutron
magic numbers, while the proton pairing energy never vanishes in Ubh isotopes. In the
single-proton spectrum, there is no discernible gap at Z = 126, while significant gaps
appear at Z = 120 and 138. Therefore, Z = 126 is not supported as a proton magic number,
while Z = 120 and 138 are suggested as candidates of proton magic numbers.

We expect further DRHBc studies on other superheavy isotopic chains to provide the
corresponding ground-state properties, so that we can extract the two-proton gaps, which
can be used as one of the signatures for magic numbers [44,83], to confirm the conclusions
on proton magic numbers in this work. In addition, in the present studies we have only
considered the ground-state static properties related to energies and shapes, while the α, β

decays or fissions are not discussed yet. It should also be noted that the conclusion drawn
here is limited by the choice of one single axial deformation parameter β2, while higher
orders such as β4 and β6 are not discussed in this work, and the reflection asymmetry
degrees of freedom such like β3 and β5 is not incorporated in the present DRHBc theory.
They may significantly influence the stability in superheavy nuclei, and their effects are
expected to be investigated in future works.
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shape symmetries around the fourfold octupole magic number N = 136: Formulation of experimental identification criteria.
Phys. Rev. C 2022, 105, 034348. [CrossRef]

19. Yang, J.; Dudek, J.; Dedes, I.; Baran, A.; Curien, D.; Gaamouci, A.; Góźdź, A.; Pędrak, A.; Rouvel, D.; Wang, H.L. Exotic
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Abstract: In the framework of axial symmetric relativistic Hartree–Bogoliubov (RHB) theory and the
Skyrme Hartree–Fock–Bogoliubov (HFB) theory, the evolution of shell structure, density distribution,
and ground state deformation in superheavy nuclei proximate to N = 258 are investigated within the
relativistic functionals DD-PC1 and DD-ME2, as well as the non-relativistic functional UNEDF0. The
results from DD-ME2 and UNEDF0 indicate that N = 258 is a neutron magic number, whereas DD-
PC1 does not anticipate the existence of a bound N = 258 magic nucleus. Further discussion suggests
that the emergence of the magic number N = 258 is related to the depression of the central density.

Keywords: superheavy nuclei; magic number; relativistic Hartree–Bogoliubov approach; Skyrme
Hartree–Fock–Bogoliubov approach

1. Introduction

The synthesis of superheavy elements and the exploration of their stability are impor-
tant research areas in low-energy nuclear physics, which will help us address fundamental
questions such as the boundaries of the nuclear chart and the limits of element existence.
The heaviest element observed so far has a proton number Z = 118 [1–3], and attempts to
synthesize even heavier elements are ongoing [4–7]. For superheavy nuclei, their stability
is primarily determined by shell effects, and self-consistent mean-field models based on
various relativistic and non-relativistic energy density functionals [8–12] are powerful tools
for studying the shell structure and stability of these nuclei.

Over the past few decades, numerous systematic studies of the superheavy nuclei
region have been conducted using EDFs. Early calculations are based on several sets of
relativistic and non-relativistic functionals under the assumption of spherical symmetry
and have explored the distribution of magic numbers in superheavy nuclei [13–16]. The
predictions of different functionals show some variation, such as proton numbers Z = 114
or Z = 120, and neutron numbers N = 172 and N = 184. However, most investigations
predict the appearance of a spherical shell gap at N = 258. Ref. [17] reveals the influence of
spin–orbit splitting on the formation of the shell gap at Z = 120 based on relativistic Hartree–
Fock–Bogoliubov (RHFB) calculations. Ref. [18] discusses the impact of the evolution of
central density in superheavy nuclei on the shell structure, with results showing that the
depression of nuclear central density leads to shell gaps at Z = 120 and N = 172. In
contrast, a flatter density distribution is more favorable for the appearance of the magic
number N = 184. The RHB calculations under the assumption of axial deformation reveal
the significant role of deformation in the shell evolution of superheavy nuclei [19]. The
results indicate that the shell gap at N = 172 has a minimal impact on the structure of
superheavy nuclei, whereas the shell gap at N = 184 has a substantial impact. Ref. [20],
based on RHB calculations with axial and triaxial deformation, predicts the widespread
existence of toroidal energy minima in superheavy nuclei and forecasts the existence of
spherical regions of superheavy nuclei. Nevertheless, none of these studies discuss the
potential existence of the larger neutron magic number N = 258.
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Recently, Ref. [21] conducted a systematic study on the ground-state and fission
properties of actinides and superheavy elements using various relativistic density func-
tionals, revealing a shell gap at N = 258. Meanwhile, calculations using the PC-PK1
functional [22] within the framework of deformed relativistic Hartree–Bogoliubov in con-
tinuum theory [23] have supported 258 as a neutron magic number [24–26]. To investigate
whether 258 is indeed a neutron magic number, this work explores the shell structure evo-
lution near N = 258 within the axial RHB and HFB frameworks, based on the relativistic
density functionals DD-PC1 [27] and DD-ME2 [28], as well as the non-relativistic density
functional UNEDF0 [29].

The article is arranged as follows. In Section 2, the numerical conditions employed in
the calculations using the RHB and Skyrme HFB methods are elaborated. The results for
the two-neutron shell gaps near N = 258, the evolution of the spherical shell structure, and
the density distributions obtained from calculations based on different density functionals
are presented and discussed in Section 3. The Section 4 provides a summary and offers
some perspectives.

2. The Details of the Theoretical Calculations

In the calculations performed within the axial RHB framework [30], a separable form
of the finite-range Gogny pairing interaction [31] is adopted to avoid uncertainties arising
from the choice of the pairing window [32]. Due to the omission of fission, the selection of
ground state is restricted to a certain range of quadrupole deformations. Through multiple
tests, it is found that truncating the basis to NF = 20 fermionic shells and NB = 20 bosonic
shells already yields satisfactory accuracy.

The calculations based on the UNEDF0 functional are performed within the axial
Skyrme HFB framework [33,34]. A density-dependent zero-range force with a mixture
of volume and surface characteristics is chosen for the pairing interaction. To avoid
pairing collapse near closed shells, the Lipkin-Nogami (LN) method is employed in the
calculations [29,35,36]. After extensive testing, the quasiparticle energy cutoff is set to
60 MeV, and the basis is truncated to 26 shells.

3. Results and Discussion

The peak in the two-nucleon gaps represents the sharp change in the two-nucleon
separation energy, which can be regarded as a signature of the emergence of magic
numbers [16,17]. The two-neutron gap δ2n is defined as

δ2n(Z, N) = S2n(Z, N)− S2n(Z, N + 2), (1)

where S2n(Z, N) is the two neutron separation energy for a nucleus with proton number Z
and neutron number N. The two-neutron gap δ2n essentially reflects the rate of change in
the binding energy of nuclei along an isotopic chain.

The two-neutron gaps and ground-state deformations obtained from RHB calculations
using the DD-PC1 and DD-ME2 functionals and HFB calculations using the UNEDF0
functional are shown in Figure 1. The hollow symbols represent unbound nuclei. The
calculations based on the DD-PC1 functional cover the isotopic chains from Z = 96 to
Z = 110. The results indicate that DD-PC1 does not yield a bound nucleus at N = 258
within the calculated isotopic chains. Specifically, for the Z = 110 chain, the drip line is
located at N = 256.

For the DD-ME2 functional, the calculations span the isotopic chains from Z = 112
to Z = 126. In Figure 1b, a strong shell effect is also observed at N = 258, where the two-
neutron shell gap gradually decreases with the increasing proton number. It significantly
reduces at Z = 124, and the peak disappears entirely at Z = 126. Meanwhile, a prominent
peak appears at N = 264. In Figure 1e, the evolution of the deformation at the ground state
shows that the competition between spherical and prolate shapes leads to the disappearance
of the shell structure at Z = 126. On the other hand, for the chains from Z = 112 to Z = 120,
the nuclei at N = 260 are unbound. For Z = 120, the nucleus at N = 264 becomes bound,
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likely due to the emergence of a new shell structure at N = 264, which increases the stability
of nearby nuclei.
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Figure 1. The two-neutron gaps δ2n (top) and quadrupole deformation β2 (bottom) at the ground
state for several isotopic chains, obtained from RHB calculations based on the DD-PC1 (a,d) and
DD-ME2 (b,e) functionals, and from HFB calculations based on the UNEDF0 (c,f) functional. The
hollow symbols indicate that the nucleus is unbound.

The results from calculations using the UNEDF0 functional exhibit significant differ-
ences compared to those with DD-ME2. As shown in Figure 1c, in the calculations spanning
isotopic chains from Z = 118 to Z = 132, a broader but lower peak appears near N = 258,
suggesting a weaker shell effect. The shape of the peak changes noticeably at Z = 130, and it
disappears entirely in the Z = 132 chain. Upon examining the shape evolution in Figure 1f,
similar to the case with DD-ME2, the competition between spherical and prolate shapes
leads to the disappearance of the shell structure near N = 258. In Figure 1b,c, instances
where the δ2n becomes negative often correspond to sudden changes in the ground-state
shape of the nucleus as illustrated in Figure 1e,f. These shape transitions cause the rate
of change in the total energy along the isotopic chain to decrease and then increase with
the addition of neutrons, resulting in negative values for the δ2n. Since DD-PC1 produces
unbound results, the following discussion will primarily focus on the results from DD-ME2
and UNEDF0.

Based on the DD-ME2 functional, the evolution of the spherical shell structure and
density variation near N = 258 within isotopic chains Z = 124 and isotonic chains N = 258
is investigated, with the results presented in Figure 2. In the density distributions shown in
Figure 2b,d, the solid lines represent neutron density, while the dash-dot lines represent
proton density. As shown in Figure 2a, the spin–orbit splitting of the 1k state, along
with the approximate restoration of pseudospin symmetry between the three pairs of
pseudospin partners (2h9/2, 3 f7/2), (3 f5/2, 4p3/2) and (1k15/2, 2i13/2) together contribute
to the formation of large shell gaps at N = 228 and N = 258. In the isotopic chain, as the
neutron number increases, the shell gap at N = 258 gradually decreases. This trend can be
explained by the density variations observed in Figure 2b. As the neutron number increases
from N = 254 to N = 258, the occupancy of the 4p orbital causes a sudden rise in neutron
density at the center. As the neutron number continues to increase, the 1k15/2 orbital is
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occupied, but this only has a small impact on the shape of the potential, particularly on the
radial profile at the bottom of the potential. The changes in the potential are reflected in the
energy levels, and it can be seen that there are only limited changes in the energy levels
near the Fermi surface in the isotopic chain.
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Figure 2. The neutron single-particle levels (a) and nucleon density distributions (b) for the spherical
states of Z = 124 isotopes, as well as the neutron single-particle levels (c) and nucleon density
distributions (d) for the spherical states of N = 258 isotones, obtained from RHB calculations based
on the DD-ME2 functional. In the density distribution plots, the solid lines represent the neutron
density distribution, while the dash-dot lines represent the proton density distribution.

For the isotonic chain N = 258 as shown in Figure 2c, the increase in proton number
leads to a rapid decrease in the shell gap at N = 258. Observing the density evolution
in Figure 2d, it can be observed that as the proton number increases, the occupation of
low-j orbitals causes the central proton density to rise. In self-consistent calculations,
the change in proton density feeds back to the neutrons through the vector potential,
driving the density distributions of proton and neutron to become more similar. In the
isotonic chain, this results in a significant change in the shape of the neutron potential. The
alterations in the potential are reflected in the neutron energy levels, and it can be seen
that as the proton number increases, the shell gap at N = 258 rapidly decreases. Ref. [37]
has comprehensively discussed the physical mechanisms underlying the formation or
suppression of the central density depression in nuclei.

To explain the differences observed near N = 258 with the UNEDF0 functional,
Figure 3 presents the two-neutron gaps δ2n calculated for the Z = 124 isotopic chain,
both with and without the LN method. It can be observed that if the LN method is not
employed to account for pairing, the trend of the δ2n with the UNEDF0 functional near
N = 258 becomes similar to the results from the DD-ME2 functional. Comparing the
calculations with and without the LN method, the differences become more pronounced
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as one approaches N = 258. A similar result can also be observed in the calculations
around N = 184.

Figure 4 shows the differences in neutron occupancy probabilities near the Fermi
surface for the nuclei 380124256 and 382124258 under both the usage and non-usage of the LN
method. In the case where the LN method is applied, comparing the results in Figure 4a,b,
the neutron occupancy of 380124256 is similar to that of 382124258, with neutrons having a
certain occupancy probability above the Fermi surface. Additionally, a significant change
in the Fermi energy can be observed, and the shell gap at N = 258 is noticeably decreased.
In contrast, without the LN method, there is a significant difference in neutron occupancy
between 380124256 and 382124258. For 382124258, the occupancy probability of levels above
the Fermi surface is 0. This difference in occupancy probabilities feeds back into the density
distribution, subsequently affecting the energy. The application of the LN method has a
substantial impact on the kinetic energy, pairing energy, and volume energy, ultimately
leading to smaller energy differences between the isotopes. This also explains why the δ2n
obtained with UNEDF0 in Figure 1c is generally smaller.
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Figure 3. The two-neutron gaps δ2n for the Z = 124 isotopic chain obtained from HFB calculations
based on the UNEDF0 functional. Green squares indicate the use of the LN method to treat pairing,
while red triangles represent calculations without the LN method.

Finally, based on the UNEDF0 functional, the evolution of the spherical shell structure
and density distribution in the Z = 124 isotopic chain and the N = 258 isotonic chain are
presented in Figure 5. In the density distributions shown in Figure 5b,d, the solid lines
represent neutron density, while the dash-dot lines represent proton density. Figure 5a
shows the changes in the spherical shell structure in the Z = 124 isotopic chain as the
neutron number increases. Unlike the results from the DD-ME2 functional, the 1k15/2
and 2i13/2 orbitals have exchanged positions, and there is a higher degree of degeneracy
between the 3 f5/2 and 4p3/2, 2h9/2 and 3 f7/2, as well as between the 1j13/2 and 2h11/2. Due
to the use of the LN method, the energy level spacing between 4p1/2 and 2i13/2 at N = 258
decreases in the isotopic chain, which is consistent with the results shown in Figure 4.
Furthermore, the shell gap at N = 258 does not decrease with increasing the neutron
number but remains stable. Observing the density evolution presented in Figure 5b, as
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previously mentioned, the neutron and proton density distributions show no significant
changes due to the use of the LN method, which corresponds to the stability of the shell
structure.

For the isotonic chain at N = 258, Figure 5c shows that as the proton number increases,
the neutron shell gap caused by the 4p1/2 and 2i13/2 orbitals remains essentially unchanged.
However, the energy of the 1k orbital drops at a faster rate. It can be anticipated that as the
proton number continues to increase, the spherical shell gap at N = 258 will be determined
by the 4p1/2 and 1k15/2 orbitals and will gradually decrease.
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Figure 4. The single-neutron level occupation probabilities for 380124256 (a,c) and 382124258 (b,d)
obtained from HFB calculations based on the UNEDF0 functional. The top panels use the LN method
to treat pairing, while the bottom panels do not. The yellow dash-dot line represents the neutron
Fermi energy. The green dashed line corresponds to the BCS formula with an average pairing gap.

Figure 5d shows the evolution of the density distribution. As the proton number
increases, the central proton density grows, but unlike the results from DD-ME2, this
change does not significantly impact the neutron density distribution. However, a slight
decrease in neutron density near the surface is still observable, indicating that the density
distribution of high-j orbitals is increasingly concentrated toward the center. This is
consistent with the evolution of the energy levels.
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Figure 5. The neutron single-particle levels (a) and nucleon density distributions (b) for the spherical
states of Z = 124 isotopes, as well as the neutron single-particle levels (c) and nucleon density
distributions (d) for the spherical states of N = 258 isotones, obtained from the HFB calculations
based on the UNEDF0 functional. In the density distribution plots, the solid lines represent the
neutron density distribution, while the dash-dot lines represent the proton density distribution.

4. Conclusions

Based on relativistic functionals DD-PC1 and DD-ME2, and the non-relativistic func-
tional UNEDF0, calculations for superheavy nuclei were performed within the axially
symmetric RHB and HFB frameworks, respectively. The DD-PC1 functional did not predict
a bound magic nucleus at N = 258, but the results indicated a significant shell gap at this
neutron number. Calculations using the DD-ME2 functional yielded a sharp and narrow
peak in the two-neutron gap at N = 258, indicating the presence of a magic number. In
contrast, the UNEDF0 functional produced a wider and lower peak for the two-neutron gap.

Further comparison of HFB calculations based on the UNEDF0 functional, with and
without the LN method, revealed that the use of the LN method caused the N = 258
nucleus to have similar single-particle orbital occupations to its neighboring nuclei. This
led to similar density distributions and energies across isotopes, resulting in a significantly
smaller two-neutron gap compared to the results from DD-ME2.

Due to the competition between spherical and prolate deformations, the neutron magic
number N = 258 disappears at Z = 126 for DD-ME2 and at Z = 132 for UNEDF0. By
examining the evolution of the spherical shell structure and the nucleon density distribution
within isotopic and isotonic chains, it was found that a decreasing central density is more
favorable for maintaining the magic number N = 258. A similar conclusion was observed
for Z = 120 and N = 172 [18]. For the neutron magic number N = 258, the results indicate
that the central density depression is primarily driven by the proton contribution.

In summary, both the DD-ME2 and UNEDF0 functionals predict that N = 258 is
a neutron magic number, and the emergence of such a shell structure is related to the
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depression of the central density. However, this does not necessarily imply the existence
of a superheavy stability island near N = 258. Further triaxial deformation calculations
are needed to assess whether the nuclei in this region will be reasonably stable against
spontaneous fission.
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Abstract: The investigation of magic numbers for nuclei in the hyperheavy region (Z > 120) is
an interesting topic. The neutron magic number N = 350 is carefully validated by the deformed
relativistic Hartree-Bogoliubov theory in continuum (DRHBc), via analysing even-even nuclei around
N = 350 of the Z = 136 isotopes in detail. Nuclei with Z = 136 and 340 ≤ N ≤ 360 are all found to
be spherical in their ground states. A big drop of the two-neutron separation energy S2n is observed
from N = 350 to N = 352 in the isotopic chain of Z = 136, and a peak of the two-neutron gap δ2n

appears at N = 350. There exists a big shell gap above N = 350 around the spherical regions of
single-neutron levels for nucleus with (Z = 136, N = 350). These evidences from the DRHBc theory
support N = 350 to be a neutron magic number in the hyperheavy region.

Keywords: relativistic density functional theory; deformed relativistic Hartree-Bogoliubov theory in
continuum; magic number; hyperheavy nuclei

1. Introduction

The investigation of superheavy elements remains one of the most important topics of
nuclear physics and chemistry. The element with the largest proton number Z observed
so far is Og with Z = 118 [1]. The limit of the existence of atomic nuclei is a longstanding
issue for both experimental and theoretical nuclear physicists, and has important impacts
on physics and chemistry. The nuclei with Z > 120 are usually called hyperheavy nu-
clei [2]. The studies of hyperheavy nuclei can enhance our understanding of exotic nuclear
structures and enable the delving into the limits of charge and mass of atomic nuclei.

Nuclear liquid drop model (LDM) [3] can help us obtain a quick understanding
of the hyperheavy nuclei, which suggests the importance of the competition between
Coulomb energies and surface effects in the hyperheavy region. However, due to the lack
of quantum shell effect, the predictions given by the LDM are pretty rough. Quantum shell
effect, which corresponds to a non-uniformity distribution of the individual single-particle
energies, is very important for finite nuclear systems. It can produce a significant energy
gap in the single-particle energy spectrum near the Fermi level for some nuclei. Such
gaps would provide additional binding energies and enhance nuclear stability. These
nuclei with additional stability are the so-called “magic nuclei”, and the corresponding
proton or neutron numbers are called “magic numbers”. Experimentally, the confirmed
neutron magic numbers are 8, 20, 28, 50, 82, 126, and the confirmed proton magic numbers
are 8, 20, 28, 50, 82.
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Due to the additional stability, magic nuclei have drawn a lot of attention [4,5]. Naïvely,
if one assumes the potential for nucleons within an atomic nucleus is a harmonic oscillator
potential, the obtained magic numbers will be 2, 8, 20, 40, 70, 112, 168, 240, ..., which disagree
with experiments. If one further takes into account the spin-orbital coupling, the predicted
magic numbers are 2, 8, 20, 28, 50, 82, 126, 184, 258, 350, ..., which correctly reproduce the
experimental magic numbers for N ≤ 126 and Z ≤ 82. However, due to the limit of
experimental information, the large predicted magic numbers, such as 258 and 350, are
difficult to be validated in the foreseeable future. For hyperheavy nuclei with Z > 120,
the neutron numbers of which can reach to N ≈ 350, and it will be interesting to use a
microscopic and self-consistent model to theoretically justify the predicted neutron magic
number 350.

Nuclear stability is usually described by the binding energy or equivalently nuclear
mass. Nuclear mass is important for both nuclear physics [6,7] and astrophysics [8–11].
Experimentally, the masses of about 2500 nuclear masses have been measured to date [12].
Theoretically, many nuclear models [13–24] and machine-learning approaches [25–36] are
developed to predict nuclear masses. Among these models, the deformed relativistic
Hartree-Bogoliubov theory in continuum (DRHBc) [37,38] simultaneously treats the defor-
mation degrees of freedom, pairing correlations, and continuum effects properly, which
are important for the descriptions of weakly bound exotic nuclei. The DRHBc theory
has been successfully applied in studying many nuclear phenomena [39–56]. In order to
provide a unified and microscopic description for the whole nuclear landscape, the DRHBc
Mass Table Collaboration [57] was established, aiming at establishing a nuclear mass table
based on the DRHBc theory with the density functional PC-PK1 [58]. The even-even [22]
and even-odd [24] parts of the DRHBc mass table have been established recently. The
Collaboration is now working on odd-Z nuclei and hyperheavy nuclei with 120 < Z ≤ 136.
Taking this opportunity, one can validate the neutron magic number N = 350 with the
DRHBc theory. In this work, the DRHBc theory is employed to study the even nuclei of
Z = 136 isotopes around N = 350 to validate the possible neutron magic number N = 350.
To our knowledge, there is currently no literature that employs modern nuclear model
to study the neutron magic number N = 350. In Section 2, the theoretical framework is
introduced. The numerical details are introduced in Section 3. The Results and discussions
are presented in Section 4. Finally, a summary is given in Section 5.

2. Theoretical Framework

The details of the DRHBc theory with meson-exchange and point-coupling density
functionals can be found in Refs. [38,59], respectively. In the following we briefly present
its formalism.

Treating self-consistently the mean fields and pairing correlations, the relativistic
Hartree Bogoliubov (RHB) equations for the nucleons read [60](

hD − λτ Δ
−Δ∗ −h∗D + λτ

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
. (1)

To describe properly the possible large spatial extension of exotic nuclei, the RHB
equations are solved in a Dirac Woods-Saxon basis, in which the radial wave functions
have a proper asymptotic behavior for large r [61]. In Equation (1), λτ is the Fermi energy
(τ = n/p for neutrons or protons), Ek and (Uk, Vk)

T the quasiparticle energy and wave
function, and hD the Dirac Hamiltonian,

hD(r) = α · p + V(r) + β[M + S(r)], (2)

with the scalar S(r) and vector V(r) potentials. The pairing potential Δ reads

Δ(r1, r2) = Vpp(r1, r2)κ(r1, r2), (3)

with a density-dependent force of zero range,
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Vpp(r1, r2) = V0
1
2
(1 − Pσ)δ(r1 − r2)

(
1 − ρ(r1)

ρsat

)
, (4)

and the pairing tensor κ [62]. For axially deformed nuclei, the potentials and densities are
expanded in terms of the Legendre polynomials,

f (r) = ∑
λ

fλ(r)Pλ(cos θ), λ = 0, 2, 4, · · · , (5)

where λ is restricted to be even numbers due to spatial reflection symmetry.

3. Numerical Details

In Equation (4), the pairing strength V0 = −325 MeV fm3, the saturation density
ρsat = 0.152 fm−3, and a pairing window of 100 MeV are adopted. The energy cutoff E+

cut
= 300 MeV and the angular momentum cutoff Jmax = 23/2 h̄ are adopted for the Dirac
Woods-Saxon basis. In Equation (5), the Legendre expansion is truncated at λmax = 10 [63].
The calculations are carried out with the relativistic density functional PC-PK1 [58]. These
numerical details are the same as the calculations of nuclei with 100 ≤ Z ≤ 120 in the
global DRHBc mass table calculations over the nuclear chart [22,24,59], and have also been
examined to be proper for the studies in this work.

4. Results and Discussions

Evolution of the potential energy curves (PECs) of Z = 136 isotopes with 340 ≤ N ≤ 360
is presented in Figure 1. Note that the Z = 136 element has temporary systematic IUPAC name
and symbol as Untrihexium and Uth respectively [64]. One can see the similar behaviours
of these PECs, where the total energy increases monotonously with the increasing absolute
value of β2 in the range that |β2| < 0.3, indicating that these nuclei are spherical in their
ground states. Note that the cutoff of angular momentum has been examined in Ref. [65],
which suggests Jmax = 31/2 h̄ in the calculation of the hyperheavy nuclei (121 ≤ Z ≤ 136)
with quadruple deformation |β2| > 0.3. The spherical ground states of these nuclei can be
interpreted as a clue that N = 350 (or other adjacent neutron numbers) is a neutron magic
number, since atomic nuclei prefer to be spherical around the magic ones. Note that the nuclei
that are analyzed in the present work all have spherical ground states, which might lead one
to consider Z = 136 as a potential magic number. However, we have checked the nuclei that
are not close to N = 350 in Z = 136 isotopic chain, most of which are not spherical ones. We
have also checked the single-proton levels around the Fermi level of 486Uth , and there is not
a significant gap above Z = 136. Instead, there is a significant gap above Z = 138, which may
suggest 138 to be a proton magic number. However, this is out of the scope of the present
paper, which could be an interesting topic for the future work.
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Figure 1. Evolution of the potential energy curves (PECs) of Uth (Z = 136) isotopes with 340 ≤ N ≤ 360.
For clarity reasons, the curves have been scaled to the energy of β2 = 0 and have been shifted upward
by 5 MeV per decreasing two neutrons.
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In order to pin down which neutron number is the magic one, the two-neutron
separation energies S2n and Fermi energies λn for these Uth isotopes are presented in
Figure 2. One can see that the two-neutron separation energies S2n evolve slowly with the
increasing of neutron number from N = 340 to N = 350 and from N = 352 to N = 360.
However, there is a big drop in the S2n from N = 350 to N = 352. This indicates that there
is a big shell gap at N = 350, which is a strong evidence for a magic number. There is
also a big jump in the Fermi energies λn from N = 350 to N = 352, which leads to the
same conclusion. Two-neutron gap δ2n = S2n(N, Z)− S2n(N + 2, Z) is also a very good
signature of magic numbers. As can be clearly seen in Figure 2, a peak of δ2n appears at
N = 350.
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Figure 2. Two-neutron separation energies S2n, two-neutron gaps δ2n, and Fermi energies λn for the
Uth (Z = 136) isotopes with 340 ≤ N ≤ 360. The bound nuclei predicted by the DRHBc theory are
denoted by filled circles, while the unbound nuclei are denoted by empty circles. The blue dashed
line displays S2n = 0, δ2n = 0, and λn = 0.

Neutron magic nuclei are typically more stable than their next neutron-rich neighbors,
while the neutron-richer nuclei next to the magic nuclei are much more likely to emit extra
neutrons outside the shells. One can also see in Figure 2 that the S2n of nuclei N ≥ 352 are
smaller than zero, which means that these nuclei are unstable against neutron emission.
The corresponding Fermi energies for these nuclei are larger than 0, which also refers to
the unstable characters. Therefore, the neutron drip-line nucleus of Uth isotopic chain
locates at N = 350. Note that the Coulomb repulsion will be very large in superheavy
and hyperheavy nuclei, and tends to prevent the nuclear binding. The reason why such a
hyperheavy nucleus 486Uth still can be bound is due to strong shell effect. The shell effect
is a hallmark characteristic in the atomic nucleus as a quantum system, providing extra
binding that can overcome Coulomb repulsion and makes the nucleus bound.

In order to confirm the neutron magic number, the single-neutron levels around the
Fermi level should be carefully checked. Figure 3 shows the single-neutron levels around
the Fermi level of 486Uth in the canonical basis obtained from constraint calculations. One
can find a big gap above N = 350 around the spherical regions, i.e., −0.05 < β2 < 0.05.
This strongly supports N = 350 as a neutron magic number.
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Figure 3. Single-neutron levels around the Fermi level of 486Uth in the canonical basis obtained
from constraint calculations with the DRHBc theory. The occupation probability of each orbital is
represented with different colors. The Fermi level λn is displayed by the green dashed line.

Figure 4 provides single-neutron and single-proton levels around the Fermi levels for
the spherical ground state of 486Uth, and the corresponding spherical quantum numbers
are labeled. As can be seen, the big gap of N = 350 appears between the level 4d3/2 and
1I17/2. In the future works, it would be interesting to check the model dependence of
neutron magic number N = 350, as well as the related levels, among different methods
and different functionals employed.
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Figure 4. Single-neutron and single-proton levels around the Fermi levels for the spherical ground
state of 486Uth in the canonical basis obtained with the DRHBc theory. The occupation probability of
each orbital is represented with different colors. The Fermi levels λn, λp are displayed by the green
dashed lines. The spherical quantum numbers are given for corresponding levels.

5. Summary

The investigation of magic numbers of hyperheavy nuclei is an interesting topic. The
neutron number N = 350 is predicted to be a magic number by the naïve analysis based
on harmonic oscillator potential with spin-orbital coupling. In this work, the predicted
neutron magic number N = 350 is validated with the DRHBc theory by studying the Uth
(Z = 136) isotopes around N = 350. It is found that the Uth isotopes with 340 ≤ N ≤ 360
are all spherical in their ground states. A big drop of the S2n appears from N = 350 to
N = 352, and a peak of δ2n is observed at N = 350. By taking 486Uth as an example, in
the single-neutron levels, there exists a big shell gap above N = 350 around the spherical
regions, i.e., −0.05 < β2 < 0.05. These evidences from DRHBc theory all support N = 350
to be a neutron magic number in the hyperheavy region.
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Note that we presently focus on Z = 136 isotopic chain as an example, and a more
rigorous validation of neutron magic number should be examined also for other isotopic
chains. The preliminary results of other isotopic chains in the hyperheavy region from the
DRHBc theory also support N = 350 to be a neutron magic number. A more comprehensive
investigation could be carried out in the future to analyze all the results of hyperheavy
nuclei. In that case, one could have a more rigorous validation of neutron magic number
N = 350 and also other possible neutron and proton magic numbers in the hyperheavy
region. Considering that the present calculations with the DRHBc theory assume nuclei to
be axial symmetry and base on the PC-PK1 functional, it would be interesting to investigate
the evolution of shell gaps with triaxial deformation or with octupole deformation, to
validate whether the triaxial or octupole deformations can challenge the spherical minima
of these nuclei. It would also be interesting to check the functional dependence of neutron
magic number N = 350.

Author Contributions: Conceptualization, X.-H.W.; methodology, C.P. and P.G.; formal analysis,
C.P., P.G. and S.W.; investigation, W.-J.L. and C.-J.L.; writing—original draft preparation, X.-H.W.;
writing—review and editing, All authors; visualization, W.-J.L., C.-J.L. and X.-H.W.; supervision,
X.-H.W.; project administration, X.-H.W.; funding acquisition, S.W. and X.-H.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the National Natural Science Foundation of China
under Grant No. 12405134 and No. 12205030, the State Key Laboratory of Nuclear Physics and
Technology, Peking University under Grant No. NPT2023KFY02, the China Postdoctoral Science
Foundation under Grant No. 2021M700256, and the start-up grant XRC-23103 of Fuzhou University.

Data Availability Statement: The dataset can be accessed upon request to the corresponding author.

Acknowledgments: Helpful discussions with members of the DRHBc Mass Table Collaboration are
highly appreciated.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Oganessian, Y.T.; Abdullin, F.S.; Alexander, C.; Binder, J.; Boll, R.A.; Dmitriev, S.N.; Ezold, J.; Felker, K.; Gostic, J.M.; Grzywacz,
R.K.; et al. Production and Decay of the Heaviest Nuclei 293,294117 and 294118. Phys. Rev. Lett. 2012, 109, 162501. [CrossRef]
[PubMed]

2. Dechargé, J.; Berger, J.F.; Dietrich, K.; Weiss, M. Superheavy and hyperheavy nuclei in the form of bubbles or semi-bubbles. Phys.
Lett. B 1999, 451, 275–282. [CrossRef]

3. Weizsäcker, C.F.V. Zur Theorie der Kernmassen. Z. Phys. 1935, 96, 431–458. [CrossRef]
4. Sorlin, O.; Porquet, M.G. Nuclear magic numbers: New features far from stability. Prog. Part. Nucl. Phys. 2008, 61, 602–673.

[CrossRef]
5. Otsuka, T.; Gade, A.; Sorlin, O.; Suzuki, T.; Utsuno, Y. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 2020,

92, 015002. [CrossRef]
6. Lunney, D.; Pearson, J.M.; Thibault, C. Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 2003, 75, 1021–1082.

[CrossRef]
7. Yamaguchi, T.; Koura, H.; Litvinov, Y.; Wang, M. Masses of exotic nuclei. Prog. Part. Nucl. Phys. 2021, 120, 103882. [CrossRef]
8. Mumpower, M.; Surman, R.; McLaughlin, G.; Aprahamian, A. The impact of individual nuclear properties on r-process

nucleosynthesis. Prog. Part. Nucl. Phys. 2016, 86, 86–126. [CrossRef]
9. Jiang, X.F.; Wu, X.H.; Zhao, P.W. Sensitivity Study of r-process Abundances to Nuclear Masses. Astrophys. J. 2021, 915, 29.

[CrossRef]
10. Wu, X.H.; Zhao, P.W.; Zhang, S.Q.; Meng, J. High-precision Nuclear Chronometer for the Cosmos. Astrophys. J. 2022, 941, 152.

[CrossRef]
11. Wu, X.H.; Meng, J. Supporting the CMB cosmic age from nuclear physics. Sci. Bull. 2023, 68, 539–541. [CrossRef] [PubMed]
12. Wang, M.; Huang, W.; Kondev, F.; Audi, G.; Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references.

Chin. Phys. C 2021, 45, 030003. [CrossRef]
13. Pearson, J.; Nayak, R.; Goriely, S. Nuclear mass formula with Bogolyubov-enhanced shell-quenching: Application to r-process.

Phys. Lett. B 1996, 387, 455–459. [CrossRef]
14. Wang, N.; Liu, M.; Wu, X.; Meng, J. Surface diffuseness correction in global mass formula. Phys. Lett. B 2014, 734, 215–219.

[CrossRef]

87



Particles 2024, 7

15. Möller, P.; Sierk, A.; Ichikawa, T.; Sagawa, H. Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data
Tables 2016, 109–110, 1–204. [CrossRef]

16. Koura, H.; Tachibana, T.; Uno, M.; Yamada, M. Nuclidic Mass Formula on a Spherical Basis with an Improved Even-Odd Term.
Prog. Theor. Phys. 2005, 113, 305–325. [CrossRef]

17. Goriely, S.; Chamel, N.; Pearson, J.M. Skyrme-Hartree-Fock-Bogoliubov Nuclear Mass Formulas: Crossing the 0.6 MeV Accuracy
Threshold with Microscopically Deduced Pairing. Phys. Rev. Lett. 2009, 102, 152503. [CrossRef]

18. Goriely, S.; Hilaire, S.; Girod, M.; Péru, S. First Gogny-Hartree-Fock-Bogoliubov Nuclear Mass Model. Phys. Rev. Lett. 2009,
102, 242501. [CrossRef]

19. Peña-Arteaga, D.; Goriely, S.; Chamel, N. Relativistic mean-field mass models. Eur. Phys. J. 2016, 52, 320. [CrossRef]
20. Xia, X.; Lim, Y.; Zhao, P.; Liang, H.; Qu, X.; Chen, Y.; Liu, H.; Zhang, L.; Zhang, S.; Kim, Y.; et al. The limits of the nuclear

landscape explored by the relativistic continuum Hartree–Bogoliubov theory. At. Data Nucl. Data Tables 2018, 121–122, 1–215.
[CrossRef]

21. Yang, Y.L.; Wang, Y.K.; Zhao, P.W.; Li, Z.P. Nuclear landscape in a mapped collective Hamiltonian from covariant density
functional theory. Phys. Rev. C 2021, 104, 054312. [CrossRef]

22. Zhang, K.; Cheoun, M.K.; Choi, Y.B.; Chong, P.S.; Dong, J.; Dong, Z.; Du, X.; Geng, L.; Ha, E.; He, X.T.; et al. Nuclear mass table in
deformed relativistic Hartree–Bogoliubov theory in continuum, I: Even–even nuclei. At. Data Nucl. Data Tables 2022, 144, 101488.
[CrossRef]

23. Pan, C.; Cheoun, M.K.; Choi, Y.B.; Dong, J.; Du, X.; Fan, X.H.; Gao, W.; Geng, L.; Ha, E.; He, X.T.; et al. Deformed relativistic
Hartree-Bogoliubov theory in continuum with a point-coupling functional. II. Examples of odd Nd isotopes. Phys. Rev. C 2022,
106, 014316. [CrossRef]

24. Guo, P.; Cao, X.; Chen, K.; Chen, Z.; Cheoun, M.K.; Choi, Y.B.; Lam, P.C.; Deng, W.; Dong, J.; Du, P.; et al. Nuclear mass table in
deformed relativistic Hartree–Bogoliubov theory in continuum, II: Even-Z nuclei. At. Data Nucl. Data Tables 2024, 158, 101661.
[CrossRef]

25. Utama, R.; Piekarewicz, J.; Prosper, H.B. Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural
network approach. Phys. Rev. C 2016, 93, 014311. [CrossRef]

26. Neufcourt, L.; Cao, Y.; Nazarewicz, W.; Olsen, E.; Viens, F. Neutron Drip Line in the Ca Region from Bayesian Model Averaging.
Phys. Rev. Lett. 2019, 122, 062502. [CrossRef]

27. Wu, X.H.; Zhao, P.W. Predicting nuclear masses with the kernel ridge regression. Phys. Rev. C 2020, 101, 051301. [CrossRef]
28. Wu, X.H.; Guo, L.H.; Zhao, P.W. Nuclear masses in extended kernel ridge regression with odd-even effects. Phys. Lett. B 2021,

819, 136387. [CrossRef]
29. Guo, L.H.; Wu, X.H.; Zhao, P.W. Nuclear Mass Predictions of the Relativistic Density Functional Theory with the Kernel Ridge

Regression and the Application to r-Process Simulations. Symmetry 2022, 14, 1078. [CrossRef]
30. Wu, X.H.; Lu, Y.Y.; Zhao, P.W. Multi-task learning on nuclear masses and separation energies with the kernel ridge regression.

Phys. Lett. B 2022, 834, 137394. [CrossRef]
31. Du, X.K.; Guo, P.; Wu, X.H.; Zhang, S.Q. Examination of machine learning for assessing physical effects: Learning the relativistic

continuum mass table with kernel ridge regression*. Chin. Phys. C 2023, 47, 074108. [CrossRef]
32. Wu, X.H.; Pan, C.; Zhang, K.Y.; Hu, J. Nuclear mass predictions of the relativistic continuum Hartree-Bogoliubov theory with the

kernel ridge regression. Phys. Rev. C 2024, 109, 024310. [CrossRef]
33. Niu, Z.M.; Liang, H.Z. Nuclear mass predictions with machine learning reaching the accuracy required by r-process studies.

Phys. Rev. C 2022, 106, L021303. [CrossRef]
34. Li, M.; Sprouse, T.M.; Meyer, B.S.; Mumpower, M.R. Atomic masses with machine learning for the astrophysical r process. Phys.

Lett. B 2024, 848, 138385. [CrossRef]
35. Wu, X.H.; Zhao, P.W. Principal components of nuclear mass models. Sci. China-Phys. Mech. Astron. 2024, 67, 272011. [CrossRef]
36. Wu, X.H.; Pan, C. Nuclear mass predictions with anisotropic kernel ridge regression. Phys. Rev. C 2024, 110, 034322. [CrossRef]
37. Zhou, S.G.; Meng, J.; Ring, P.; Zhao, E.G. Neutron halo in deformed nuclei. Phys. Rev. C 2010, 82, 011301. [CrossRef]
38. Li, L.; Meng, J.; Ring, P.; Zhao, E.G.; Zhou, S.G. Deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2012,

85, 024312. [CrossRef]
39. Sun, X.X. Deformed two-neutron halo in 19B. Phys. Rev. C 2021, 103, 054315. [CrossRef]
40. Zhang, K.; He, X.; Meng, J.; Pan, C.; Shen, C.; Wang, C.; Zhang, S. Predictive power for superheavy nuclear mass and possible

stability beyond the neutron drip line in deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2021,
104, L021301. [CrossRef]

41. Pan, C.; Zhang, K.Y.; Chong, P.S.; Heo, C.; Ho, M.C.; Lee, J.; Li, Z.P.; Sun, W.; Tam, C.K.; Wong, S.H.; et al. Possible bound nuclei
beyond the two-neutron drip line in the 50 ≤ Z ≤ 70 region. Phys. Rev. C 2021, 104, 024331. [CrossRef]

42. Sun, X.X.; Zhou, S.G. Rotating deformed halo nuclei and shape decoupling effects. Sci. Bull. 2021, 66, 2072–2078. [CrossRef]
[PubMed]

43. Choi, Y.B.; Lee, C.H.; Mun, M.H.; Kim, Y. Bubble nuclei with shape coexistence in even-even isotopes of Hf to Hg. Phys. Rev. C
2022, 105, 024306. [CrossRef]

44. Kim, S.; Mun, M.H.; Cheoun, M.K.; Ha, E. Shape coexistence and neutron skin thickness of Pb isotopes by the deformed
relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2022, 105, 034340. [CrossRef]

88



Particles 2024, 7

45. Zhang, K.; Yang, S.; An, J.; Zhang, S.; Papakonstantinou, P.; Mun, M.H.; Kim, Y.; Yan, H. Missed prediction of the neutron halo in
37Mg. Phys. Lett. B 2023, 844, 138112. [CrossRef]

46. Zhang, K.Y.; Papakonstantinou, P.; Mun, M.H.; Kim, Y.; Yan, H.; Sun, X.X. Collapse of the N = 28 shell closure in the newly
discovered 39Na nucleus and the development of deformed halos towards the neutron dripline. Phys. Rev. C 2023, 107, L041303.
[CrossRef]

47. Zhang, X.Y.; Niu, Z.M.; Sun, W.; Xia, X.W. Nuclear charge radii and shape evolution of Kr and Sr isotopes with the deformed
relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2023, 108, 024310. [CrossRef]

48. Guo, P.; Pan, C.; Zhao, Y.C.; Du, X.K.; Zhang, S.Q. Prolate-shape dominance in atomic nuclei within the deformed relativistic
Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2023, 108, 014319. [CrossRef]

49. Zhang, K.Y.; Zhang, S.Q.; Meng, J. Possible neutron halo in the triaxial nucleus 42Al. Phys. Rev. C 2023, 108, L041301. [CrossRef]
50. Mun, M.H.; Kim, S.; Cheoun, M.K.; So, W.; Choi, S.; Ha, E. Odd-even shape staggering and kink structure of charge radii of Hg

isotopes by the deformed relativistic Hartree–Bogoliubov theory in continuum. Phys. Lett. B 2023, 847, 138298. [CrossRef]
51. Xiao, Y.; Xu, S.Z.; Zheng, R.Y.; Sun, X.X.; Geng, L.S.; Zhang, S.S. One-proton emission from 148–151Lu in the DRHBc+WKB

approach. Phys. Lett. B 2023, 845, 138160. [CrossRef]
52. He, X.T.; Wu, J.W.; Zhang, K.Y.; Shen, C.W. Odd-even differences in the stability “peninsula” in the 106 ≤ Z ≤ 112 region with

the deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2024, 110, 014301. [CrossRef]
53. Lu, Q.; Zhang, K.Y.; Zhang, S.S. Triaxial shape of the one-proton emitter 149Lu. Phys. Lett. B 2024, 856, 138922. [CrossRef]
54. Pan, C.; Zhang, K.; Zhang, S. Nuclear magnetism in the deformed halo nucleus 31Ne. Phys. Lett. B 2024, 855, 138792. [CrossRef]
55. An, J.L.; Zhang, K.Y.; Lu, Q.; Zhong, S.Y.; Zhang, S.S. A unified description of the halo nucleus 37Mg from microscopic structure

to reaction observables. Phys. Lett. B 2024, 849, 138422. [CrossRef]
56. Zhang, K.Y.; Pan, C.; Wang, S. Examination of the evidence for a proton halo in 22Al. Phys. Rev. C 2024, 110, 014320. [CrossRef]
57. DRHBc Mass Table Collaboration. Available online: http://drhbctable.jcnp.org/ (accessed on 1 October 2024).
58. Zhao, P.W.; Li, Z.P.; Yao, J.M.; Meng, J. New parametrization for the nuclear covariant energy density functional with a

point-coupling interaction. Phys. Rev. C 2010, 82, 054319. [CrossRef]
59. Zhang, K.; Cheoun, M.K.; Choi, Y.B.; Chong, P.S.; Dong, J.; Geng, L.; Ha, E.; He, X.; Heo, C.; Ho, M.C.; et al. Deformed relativistic

Hartree-Bogoliubov theory in continuum with a point-coupling functional: Examples of even-even Nd isotopes. Phys. Rev. C
2020, 102, 024314. [CrossRef]

60. Kucharek, H.; Ring, P. Relativistic field theory of superfluidity in nuclei. Z. Phys. A 1991, 339, 23–35. [CrossRef]
61. Zhou, S.G.; Meng, J.; Ring, P. Spherical relativistic Hartree theory in a Woods-Saxon basis. Phys. Rev. C 2003, 68, 034323.

[CrossRef]
62. Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: New York, NY, USA, 1980.
63. Pan, C.; Zhang, K.; Zhang, S. Multipole expansion of densities in the deformed relativistic Hartree-Bogoliubov theory in

continuum. Int. J. Mod. Phys. E 2019, 28, 1950082. [CrossRef]
64. Chatt, J. Recommendations for the naming of elements of atomic numbers greater than 100. Pure Appl. Chem. 1979, 51, 381–384.
65. Wang, S.; Guo, P.; Cong, P. Determining the ground state for superheavy nuclei from the deformed relativistic Hartree-Bogoliubov

theory in continuum. Particles 11. under review.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

89



Article

Masses and Quadrupole Deformations of Even-Z Nuclei Within
a Triaxial Relativistic Hartree–Bogoliubov Model

Qin Zhou and Zhipan Li *

School of Physical Science and Technology, Southwest University, Chongqing 400715, China; zqxhxxd@163.com
* Correspondence: zpliphy@swu.edu.cn

Abstract: This study investigates the masses and quadrupole deformations of even-Z nuclei
within the range 8 � Z � 104 using the triaxial relativistic Hartree–Bogoliubov model
(TRHB) with the PC-PK1 density functional. For odd-mass nuclei, the global minima
were determined using the automatic blocking method and their dynamical correlation
energies (DCEs) were approximated using the average values of neighboring even–even
nuclei calculated from a microscopic, five-dimensional, collective Hamiltonian (5DCH). The
mean-field results underestimate the binding energies of most open-shell nuclei, with an
initial root–mean–square (rms) deviation of 2.56 MeV for 1223 even-Z nuclei. Incorporating
DCEs significantly reduces this deviation to 1.36 MeV. Additionally, the descriptions of two-
neutron and one-neutron separation energies are improved, with rms deviations decreasing
to 0.75 MeV and 0.65 MeV, respectively. Further refinement through accounting for odd–
even differences in DCEs reduces the rms deviations for binding energies and one-neutron
separation energies to 1.30 MeV and 0.63 MeV, respectively. Regarding the quadrupole
deformations, TRHB calculations reveal spherical shapes near shell and subshell closures,
well-deformed shapes at the mid-shell, and rapid shape transitions in medium- and heavy-
mass regions. Oblate shapes dominate in regions (Z, N) ∼ (14, 14), (34, 36), and (40, 60),
and the neutron-deficient Pb region, with notable odd–even shape staggering attributed
to the blocking effect of the odd nucleon. Triaxial shapes are favored in the mass regions
(Z, N) ∼ (60, 76) and (76, 116).

Keywords: nuclear mass; quadrupole deformation; triaxial relativistic Hartree–Bogoliubov;
blocking effect; five-dimensional collective Hamiltonian

1. Introduction

Nuclear mass (or binding energy) is a fundamental property of atomic nuclei. To date,
more than 3300 nuclides have been identified or synthesized in laboratories [1], with ap-
proximately 300 occurring naturally. Using advanced experimental techniques such as
time-of-flight measurements, storage ring mass spectrometry, and ion trap methods [2,3],
researchers have accurately determined the masses of more than 2500 nuclides [4].

Theoretical models predict that there are approximately 7000 to 12,000 bound nuclei [5,6],
with the location of the neutron drip line for Z > 11 remaining highly uncertain. The search
for the limits of nuclear binding is deeply intertwined with the need to understand the
origin of elements [7]. In particular, the astrophysical rapid neutron-capture process,
which is responsible for the formation of many heavy elements, critically depends on the
properties of nuclei near the neutron drip line. These properties, however, will remain
experimentally inaccessible in the foreseeable future, making theoretical predictions across
the nuclear landscape indispensable. Over the past few decades, significant progress has
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been made using macroscopic–microscopic models [8–11], achieving remarkable accuracy
with root–mean–square deviations of approximately 300 keV [12].

Nuclear density functional theory (DFT), based on effective nucleon–nucleon interac-
tions, is a highly promising microscopic approach in the field of nuclear physics. It is built
upon a universal energy density functional and, with just a limited number of parameters,
it is able to describe not only the nuclear binding energies but also other crucial quantities
relevant to simulating the nucleosynthesis process, such as β-decay rates and fission rates,
in a unified and comprehensive manner [13].

A number of Hartree–Fock–Bogoliubov (HFB) mass-table-type calculations have been
performed based on the non-relativistic Skyrme [5,14–18] and Gogny [19–21] density
functionals. The Skyrme mass model HFB-27* [18] determines its 24 parameters in func-
tionals and corrections by fitting 2353 nuclear masses, achieving an accuracy of 0.512
MeV. The Gogny mass model D1M [20] incorporates the beyond-mean-field dynamical
correlation energies (DCEs) and fits its 14 parameters to 2149 measured masses, resulting
in a final rms deviation of 0.798 MeV.

The relativistic DFT was proven to be a powerful theory in nuclear physics and has
been successfully employed to describe a variety of nuclear phenomena [22–30]. Sig-
nificant progress in mass description has also been achieved based on relativistic DFT.
In 2015, we performed a systematic calculation for 575 even–even nuclei using the relativis-
tic mean-field plus Bardeen–Cooper–Schrieffer (RMF+BCS) framework with the PC-PK1
functional [31], and the beyond-mean-field DCEs were taken into account using a micro-
scopically mapped, five-dimensional, collective Hamiltonian (5DCH) without additional
free parameters. The root–mean–square (rms) deviation of nuclear masses was significantly
reduced to 1.14 MeV [32]. In 2021, we extended our previous work to the nuclear landscape
of even–even nuclei using an advanced triaxial relativistic Hartree–Bogoliubov (TRHB)
framework [33]. It was emphasized that the nuclear landscape is considerably extended
using the PC-PK1 functional compared to previous results obtained with the relativistic
density functionals DD-PC1 [34] and TMA [35]. Moreover, the calculations reproduced the
measured mass regions for the shape and the coexistence of multiple shapes and predict
new regions [36].

Our final goal is to establish a global calculation for the nuclear ground state and
low-lying excitation properties across the entire nuclear landscape using the TRHB with
the PC-PK1 functional. As mentioned above, for the first step, we fulfilled this aim for even–
even nuclei [33,36]. Here, we will conduct a study of the properties of odd-mass nuclei,
focusing on the masses and quadrupole deformations of the even-Z odd-N nuclei whose
masses have been measured. The key aspect is the appropriate handling of the blocking
of odd nucleon and the beyond-mean-field DCEs. The blocking of odd nucleon was
introduced in the TRHB model and successfully applied to numerous studies, such as the
Yrast band of 109Ag [37], magnetic rotations in 198Pb and 199Pb [38], chirality in 106Ag [39],
and nuclear ββ decay [40]. As the variation in DCEs is gentle [33,41], in this work, we will
approximately calculate the DCEs of odd-mass nuclei through the interpolation of those
of neighboring even–even nuclei, and further phenomenologically take into account the
odd–even differences in DCEs.

In Section 2, we introduce the Relativistic Hartree–Bogoliubov (RHB) theory and the
blocking effect for odd-mass nuclei. Section 3 presents a systematic analysis of the binding
energies, quadrupole deformations, and dynamical correlation energies (DCEs) of 1223
even-Z nuclei. Finally, the conclusions and future perspectives are summarized.
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2. Theoretical Framework and Numerical Details

The RHB theory provides a unified and self-consistent treatment of mean fields and
pairing correlations [42–45]. The RHB equation is as follows:

(
hD − λτ Δ
−Δ∗ −h∗D + λτ

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
, (1)

where hD is the Dirac Hamiltonian, Δ is the pairing field, λτ is the Fermi energy for neutron
or proton (τ = n, p), Ek is the quasiparticle energy, and Uk and Vk are the quasiparticle
wave functions.

The Dirac Hamiltonian in the coordinate space is

hD(r) = α · p + V(r) + β[M + S(r)], (2)

with the scalar and vector potentials

S(r) = αSρS + βSρ2
S + γSρ3

S + δSΔρS,

V(r) = αVρV + γVρ3
V + δVΔρV + eA0 + αTVτ3ρ3 + δTVτ3Δρ3

(3)

constructed using the following densities:

ρS(r) = ∑
k>0

V†
k (r)γ0Vk(r),

ρV(r) = ∑
k>0

V†
k (r)Vk(r),

ρ3(r) = ∑
k>0

V†
k (r)τ3Vk(r).

(4)

According to the no-sea approximation, the summations in the above equations were per-
formed over the quasiparticle states with positive energies in the Fermi sea. In Equations (3),
we use PC-PK1 parametrization [31] for the parameters αS, βS, · · · .

The pairing potential is as follows:

Δ(r1, r2) = Vpp(r1, r2)κ(r1, r2), (5)

where, for simplicity, the spin and isospin degrees of freedom are not shown, and
κ = V∗UT is the pairing tensor [46]. In principle, the same relativistic interaction used
in Equations (2) and (3) can be applied to the pairing channel. In 1991, Kucharek and
Ring [43] derived the Dirac–Hartree–Fock–Bogoliubov equations using a unified relativistic
interaction within a quantum field theory framework. However, their analysis of pairing
correlations in symmetric nuclear matter yielded excessively large pairing gaps due to the
strongly repulsive nature of the relativistic nuclear interaction. Subsequent studies demon-
strated that adopting the finite-range Gogny interaction or a separable pairing force [47]
for the pairing channel produces more realistic pairing gaps. Therefore, in this work, we
adopted the latter approach, employing the separable pairing force for Vpp:

Vpp(r1, r2, r′1, r′2) = Gδ(R − R′)P(r)P(r′)1
2
(1 − Pσ). (6)

The selected pairing interaction fails to maintain covariance. However, since a fully covari-
ant treatment of paring dynamics in RMF theory is still an open question, we followed
the widely practiced approach and used Equation (6) in the nuclear rest frame. Here,
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R = 1
2 (r1 + r2) and r = r1 − r2 denote the center of mass and the relative coordinates,

respectively, and P(r) has a Gaussian expression

P(r) =
1

(4πa2)3/2 e−r2/4a2
. (7)

The projector 1
2 (1 − Pσ) allows only the states with a total spin S = 0. The two parameters

G and a were determined in Ref. [47] through fitting to the density dependence of pairing
gaps at the Fermi surface for nuclear matter obtained with the Gogny forces.

For an odd-mass nucleus, the blocking effect of the unpaired nucleon needs to be
considered [46]. The ground state of a system with an unpaired particle can be described
using a one-quasiparticle state:

|Φ1〉 = α†
kb
|Φ〉 = α†

kb ∏
k

αk|0〉, (8)

where α†
kb

corresponds to the quasiparticle state that is properly blocked. In other words,
the one-quasiparticle state |Φ1〉 is the vacuum with respect to the set of quasiparticle
operators (α1, . . . , α†

kb
, . . . , αN). That is, the blocking effect can be realized through the

exchange of αkb
↔ α†

kb
. According to Equation (1), this exchange corresponds to the

exchange of the columns (V∗
kb

, U∗
kb
) ↔ (Ukb

, Vkb
) and that of the energy Ekb

↔ −Ekb
.

In principle, the blocked orbital kb breaks the time reversal symmetry and the currents
appear. However, in general, the contribution of the currents is very weak for the bulk
properties of odd-mass nuclei [48], and thus the currents were neglected in the present
calculation. To determine the ground state of an odd-mass nucleus, one needs to find
the correct deformation minimum with the correct blocking orbital. Here, we blocked
the lowest quasiparticle orbital in each iteration of TRHB equation, which is referred to
as “automatic blocking”. Moreover, for the shape-coexisting nuclei or soft nuclei, one
has to perform automatic blocking calculations staring from various initial states with
different deformations.

The TRHB equation is solved through expanding the quasiparticle wavefunctions
in terms of a three-dimensional harmonic oscillator basis in Cartesian coordinates [49].
For nuclei with Z < 20, 20 ≤ Z < 82, and 82 ≤ Z ≤ 104, the harmonic oscillator basis
contains 12, 14, and 16 major shells, respectively, and these were examined to determine
their ability to provide converged results.

3. Results and Discussion

Figure 1 illustrates the differences between the experimental binding energies [4] and
the theoretical ones calculated by the TRHB using the PC-PK1 functional for 1223 even-Z nu-
clei. The mean-field results for the nuclei around the neutron shell closure (N = 8, 20, 50, 82)
and proton shell closure (Z = 20) agree well with the data. However, the binding energies
were underestimated for most open-shell nuclei, and large discrepancies (>3 MeV) were
found in the transitional regions (c.f. Figure 2). The root–mean–square (rms) deviation
from the experimental nuclear binding energies is 2.56 MeV.
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Figure 1. Differences between the experimental binding energies [4] and the theoretical ones cal-
culated by the TRHB with the PC-PK1 functional for 1223 even-Z nuclei. Considering the non-
convergency of PC-PK1 for 14O, 23−26Mg, 26,27Si, 33,34S, and 34Ar, the PCF-PK1 functional [50] was
adopted for these nuclei.
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Figure 2. Quadrupole deformations β (panel (a)) and γ (panel (b)) of the mean-field ground state,
calculated using TRHB with the PC-PK1 functional, are shown for 1223 even-Z nuclei. The gray color
in panel (b) denotes the spherical nuclei, where γ is meaningless.

Figure 2 displays the quadrupole deformations β and γ of the mean-field ground
state, calculated using TRHB with PC-PK1 functional. Here, β represents the quadrupole
deformation, which is distinct from the 4 × 4 Dirac matrix β in Equation (2). In general,
the nuclei close to the shells and subshell (N, Z = 8, 20, 28, 40, 50, 82, 126) are spherical,
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while the mid-shell nuclei are well-deformed. Between these areas, rapid shape transitions
or even shape phase transitions can be observed in the medium- and heavy-mass regions.
Shape phase transitions are characterized by abrupt changes in the ground-state nuclear
shape. In panel (b), most of the deformed nuclei are prolate and oblate shapes are favored
in the regions (Z, N) ∼ (14, 14), (34, 36), and (40, 60), as well as in neutron-deficient Pb
region, which are well-known to contain coexisting shapes [51,52]. Moreover, in these
regions, the quadrupole deformations in the odd nuclei are quite different from those of
the neighboring even nuclei, presenting with an odd–even staggered shape. This is due
the subtle balance between the coexisting shapes with different blocking configurations
occupied by the odd nucleon [53]. These results are consistent with those of DRHBc mass
table [41] and HFB calculations using Gogny D1S [21]. In panel (b), it is also interesting to
observe that triaxial shapes are favored in the mass regions (Z, N) ∼ (60, 76) and (76, 116).

The TRHB results were obtained based on the static mean-field approximation, which
is characterized through the breaking of symmetries in the underlying Hamiltonian, includ-
ing translational, rotational, and particle number symmetries. This leads to the inclusion of
static correlations such as deformations and pairing. However, to incorporate the dynami-
cal correlations, one has to move beyond the mean-field approximation by restoring the
broken symmetries and mixing the configurations of symmetry-breaking product states.
For even–even nuclei, we utilized a TRHB-based, five-dimensional collective Hamilto-
nian (5DCH) to take into account the quadrupole dynamical correlations. The resulting
ground-state energy of the 0+1 state (laboratory frame) is derived without phenomeno-
logical adjustments, providing a direct comparison with the experimental data [33,36].
The dynamical correlation energy (DCE) can be defined as the energy difference between
the mean-field global minimum in the intrinsic frame and the ground state with good
angular momentum in the laboratory frame, representing the energy correction from the
dynamical collective correlations. This aligns with the standard many-body techniques for
symmetry restoration.

In Figure 3a, we take even–even Th isotopes as examples to illustrate the DCEs
calculated from 5DCH based on TRHB with a PC-PK1 functional. These vary in a relatively
mild manner with the neutron number, except for the nuclei close to the neutron shells.
For the odd-mass nuclei, recently, rotational DCEs were extracted using the state-of-the-
art angular momentum projection method, and it was found that they change smoothly
from a light- to a heavy-mass region [54]. They also proved the validity of the cranking
approximation for the odd-mass nuclei, which is used to construct a DRHBc mass table
for the even-Z nuclei. Figure 3b displays the odd–even differences δDCE(N) = (−1)N(2 ×
DCE(N)−DCE(N − 1)−DCE(N + 1))/2 for the rotational DCEs, which were taken from
the DRHBc mass table [41]. These are basically oscillated around 0.2 MeV. For nuclei in the
gaps in Figure 3b, the DCE was set to zero, and the corresponding odd–even differences
δDCE(N) were consequently assigned a value of zero.
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Figure 3. (a) DCEs of the even–even Th isotopic chain calculated using 5DCH based on TRHB
as a function of neutron number N. (b) Odd–even difference δDCE(N) = (−1)N(2 × DCE(N) −
DCE(N − 1)− DCE(N + 1))/2 for the rotational DCEs of Th isotopes. The rotational DCEs are taken
from the DRHBc mass table [41].

The above findings enable us to approximate the DCEs of odd-mass nuclei by aver-
aging those of their neighboring even–even nuclei. In Figure 4 and Table 1, we present
the differences between the experimental binding energies [4] and the theoretical values
incorporating DCEs. Notably, the theoretical results exhibit excellent agreement with the
experimental data, with the energy deviations for most nuclei falling within ±1 MeV.
Larger deviations (>3 MeV) were primarily observed in light nuclei and the N ∼ 126
mass region. For the 1223 even-Z nuclei, the rms deviation from the experimental binding
energies was significantly reduced to 1.36 MeV. Furthermore, in Figure 5 and Table 1,
the description for both the two-neutron and one-neutron separation energies was opti-
mized by considering the DCEs, and their rms deviations were reduced from 0.98 and
0.75 MeV to 0.75 and 0.65 MeV, respectively. Notably, this accurate description of nuclear
binding energies was achieved using a global density functional, without introducing any
additional phenomenological parameters.

Finally, we considered the odd–even differences for DCEs through phenomenolog-
ically subtracting a constant from those of odd-mass nuclei. For odd-mass nuclei with
an initial DCE = 0 or those whose DCEs would become negative after subtraction (i.e.,
DCE < 0), the DCEs were clamped at zero to ensure physical consistency. When the con-
stant was chosen as 0.20 MeV, we obtained the best description for the binding energies
and Sn, whose rms deviations were further reduced to 1.30 and 0.63 MeV, respectively
(see the last row of Table 1). This serveed as a valuable reference for future refinements of
odd-A nuclei.

96



Particles 2025, 8, 57

�� �� �� ��� ��� ���

��

��

��

	�

���

����������	
����


��
���
���
����������

�
��
��
�
��
�
�
	


��
�

����

����

����

���

���

���

���

�	

��

	�

��

	�

���

Figure 4. Differences between the experimental binding energies [4] and the theoretical ones calcu-
lated using the TRHB with DCEs for 1223 even-Z nuclei.
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Figure 5. Differences between the experimental separation energies [4] and the theoretical ones
calculated using the TRHB with DCEs for 1223 even-Z nuclei. The two-neutron separation energies
S2n are shown in panel (a), while the one-neutron separation energies Sn are shown in panel (b).
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Table 1. The rms deviations for the binding energies, two-neutron separation energies S2n, and one-
neutron separation energies Sn in the TRHB calculations without (first row) and with (second row)
DCEs, in comparison with the AME2020 data [4]. The dataset comprises 1223 nuclei from AME2020
data [4], including 606 even-Z odd-N nuclei and 617 neighboring even–even nuclei. The DCE∗ in the
last row means that all the DCEs of 617 odd-mass nuclei were subtracted with a constant 0.20 MeV.
All the values in the table are in the unit of MeV.

DFTs σB σS2n σSn Date Number

TRHB w/o DCE 2.56 0.98 0.75 1223
TRHB w DCE 1.36 0.75 0.65 1223
TRHB w DCE∗ 1.30 0.75 0.63 1223

4. Summary and Outlook

In summary, the masses and quadrupole deformations of even-Z nuclei within the
range 8 � Z � 104 were calculated using the triaxial relativistic Hartree–Bogoliubov
model with the PC-PK1 density functional. For odd-mass nuclei, the global minima were
determined via the automatic blocking method, while their dynamical correlation energies
(DCEs) were approximated using the average values of adjacent even–even nuclei, derived
from a microscopic five-dimensional collective Hamiltonian (5DCH) [33].

The mean-field results underestimate the nuclear binding energies for most open-shell
nuclei, and the root–mean–square (rms) deviation is 2.56 MeV for the total 1223 even-Z
nuclei. After incorporating dynamical correlation energies (DCEs), the rms deviation is
significantly reduced to 1.36 MeV. Additionally, the description of two-neutron and one-
neutron separation energies improves, with rms deviations decreasing from 0.98 MeV
and 0.75 MeV to 0.75 MeV and 0.65 MeV, respectively. Further refinement is achieved by
accounting for odd–even differences in DCEs through a phenomenological adjustment,
where a constant 0.20 MeV is subtracted from the DCEs of odd-mass nuclei. This reduces
the rms deviations for binding energies and one-neutron separation energies to 1.30 MeV
and 0.63 MeV, respectively.

Regarding quadrupole deformations, nuclei near-shell and subshell closures have
spherical shapes, while those at the mid-shell are very deformed. In the medium- and heavy-
mass regions, rapid shape transitions—or even shape-phase transitions—are observed.
Triaxial shapes are predicted in the mass regions (Z, N) ∼ (60, 76) and (76, 116). Oblate
shapes are favored in the regions (Z, N) ∼ (14, 14), (34, 36), and (40, 60), as well as in
the neutron-deficient Pb region, where we also can also observe that the quadrupole
deformations of odd nuclei differ significantly from those of the neighboring even nuclei,
manifesting as an odd–even shape staggering. This phenomenon arises due to the delicate
balance between coexisting shapes, influenced by the blocking configurations of the odd
nucleon [53].

In the future, we will continue to investigate the covariance issues in the pairing
interaction. The microscopic 5DCH framework can be extended to explicitly account for
the contributions of odd nucleons. This would enable precise calculations of dynamical
correlation energies (DCEs) for odd-mass and odd–odd nuclei, as well as the construction of
a comprehensive nuclear landscape based on the PC-PK1 density functional or its advanced
counterpart, PCF-PK1 [50].
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